B.Sc. Mathematics

Syllabus

AFFILIATED COLLEGES

Program Code: 22A

2023-2024 onwards

BHARATHIAR UNIVERSITY

(A State University, Accredited with "A++" Grade by NAAC, Ranked $21^{\text {st }}$ among Indian Universities by MHRD-NIRF) Coimbatore - 641 046, Tamil Nadu, India

Program Educational Objectives (PEOs)	
The B. Sc. Mathematics program describe accomplishments that graduates are expected to attain within five to seven years after graduation	
PEO1	Acquire knowledge in functional areas of Mathematics and apply in all the fields of learning.
PEO2	Recognise the need for life long learning and demonstrate the ability to explore some mathematical content independently.
PEO3	Employ mathematical ideas encompassing logical reasoning , analytical, numerical ability, theoretical skills to model real-world problems and solve them.
PEO4	Develop critical thinking, creative thinking, self confidence for eventual success in career.
PEO5	Analyze, interpret solutions and to enhance their Entrepreneurial skills, Managerial skill and leadership
PEO6	To prepare the students to communicate mathematical ideas effectively and develop their ability to collaborate both intellectually and creatively in diverse contexts.
PEO7	Rewarding careers in Education, Industry, Banks, MNCs and pursue higher studies

Program Specific Outcomes (PSOs)	
After the successful completion of B. Sc. Mathematics program, the students are expected to	
PSO1	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for extended learning.
PSO2	Identify the applications of Mathematics in other disciplines and society.
PSO3	Develop an in-depth knowledge in Mathematics appreciating the connections between theory and its applications .
PSO4	Demonstrate their mathematical modeling ability, problem solving skills, creative talent and power of communication necessary for various kinds of employment.
PSO5	Develop mathematical aptitude and the ability to think abstractly.
PSO6	Learn independently and improve ones performance.
PSO7	Students are equipped to appear competitive examinations.

Program Outcomes (POs)	
On successful completion of the B. Sc. Mathematics program	
PO1	Students are empowered with analytical and logical skills-to formulate results and construct mathematical argument.
PO2	Ability to organize, analyze and interpret data accurately in both academic and non -academic context.
PO3	Demonstrate effective communication of mathematical ideas and creative thinking skills to facilitate solving real world problems as a team and independently.
PO4	Appreciate and identify the connections between Mathematics and other disciplines.
PO5	Competency to obtain employment in education, public and private sectors.. PO6Identify the area of interest for extended learning from the understanding gained from the domain and allied areas of Mathematics.
PO7	Develop mathematical aptitude and make critical observations. PO8Garner innovative ideas to face global challenges. PO9Instill a sense of responsibility in tackling professional and social issues ethically.
PO10	Trigger their passion for research in unexplored areas of Mathematics.

BHARATHIAR UNIVERSITY: COIMBATORE 641046

B. Sc. Mathematics Curriculum (Affiliated Colleges)

(CBCS PATTERN)

(For the students admitted from the academic year 2023-2024 and onwards)

Scheme of Examination

Part	Title of the Course	Hours/ Week	Examination				Credits
				Maximum Marks			
				CIA	CEE	Total	
	Semester I						
I	Language - I	6	3	25	75	100	4
II	English - I	6	3	25	75	100	4
III	Core Paper I - Classical Algebra	4	3	25	75	100	4
III	Core Paper II-Calculus	5	3	25	75	100	4
III	Allied A : Paper I Chosen by the college	7	3	25	75	100	4
IV	Environmental Studies*	2	3	-	50	50	2
	Total	30		125	425	550	22
	Semester II						
I	Language - II	6	3	25	75	100	4
II	English - II	4	3	25	25	$50^{\text {@@ }}$	2
II	Effective English :Language Proficiency for Employability http://kb.naanmudhalvan.in/Special :Filepath/Cambridge Course Detai ls.pdf	2		25	25	$50^{\text {\#\# }}$	2
III	Core Paper III - Analytical Geometry	4	3	25	75	100	4
III	Core Paper IV-Trigonometry, Vector Calculus and Fourier Series	5	3	25	75	100	4
III	Allied A: Paper II Chosen by the College	7	3	25	75	100	4
IV	Value Education - Human Rights*	2	3	-	50	50	2
	Total	30		150	400	550	22
	Semester III						
I	Language - III	6	3	25	75	100	4
II	English - III	6	3	25	75	100	4
III	Core Paper V- Differential Equations and Laplace Transforms.	3	3	25	75	100	4

III	Core Paper VI- Statics	3	3	25	75	100	4
III	Allied B : Paper I - Chosen by the college	7	3	20	55	75	3
IV	Skill based Subject - Operations Research -I	3	3	25	25	50@@	2
IV	Tamil** / Advanced Tamil* (OR) Non-major elective - I (Yoga for Human Excellence)* / Women's Rights*	2	3	${ }^{-}$	50	50	2
	Total	30		145	430	575	23
	Semester IV						
I	Language - IV	5	3	25	75	100	4
II	English - IV	5	3	25	75	100	4
III	Core Paper VII-Dynamics	3	3	25	75	100	4
III	Core Paper VIII- Programming in C Core Paper VIII -Programming in C Practical	2	3	20	55	75	3
III		1	3	10	15	25	1
III	Allied B - Paper II Chosen by the college	5	3	20	55	75	3
III	Allied B - Paper II Chosen by the college (For Practical Paper)	2	3	20	30	50	2
IV	Skill based Subject - Operations Research - Paper II	3	3	25	25	$50^{@ @}$	2
IV	Office Fundamentals :Digital Skills for Employability http://kb.naanmudhalvan.in/Specia I:Filepath/Microsoft Course Details .xlsx	2		25	25	$50^{\# \#}$	2
IV	Tamil**/Advanced Tamil* (OR) Non-major elective -II (General Awareness*)	2		-	50	50	2
	Total	30		195	480	675	27
	Semester V						
III	Core Paper IX-Real Analysis-I	5	3	25	75	100	4
III	Core Paper X- Complex Analysis-I	6	3	25	75	100	4
III	Core Paper XI- Modern AlgebraI	6	3	25	75	100	4
III	Core Paper XII- Discrete Mathematics	5	3	25	75	100	4
III	Elective I	5	3	20	55	75	3
IV	Skill based Subject - Operations Research - Paper III	3	3	25	25	50@@	2
	Total	30		145	380	525	21

Elective - III	A	Graph Theory
	B	Automata Theory \& Formal Languages
	\mathbf{C}	Programming in C++ *
	\mathbf{D}	Number Theory
	\mathbf{E}	Introduction to Industry 4.0

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	M	S	S	S	S	M	S	S
CO2	S	M	M	M	S	S	S	M	M	S
C03	S	M	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Reference Books	
1	Mathematics for BSc - Vol I and. II - P. Kandasamy \&K.Thilagarathy(S.Chand and Co-2004)
2	A Text book of calculus- Shanthi Narayanan \&J.N.Kapoor(S.Chand\& Co.2014)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://ocw.mit.edu/resources/res-18-006-calculus-revisited-single-variable-calculus-fall-2010/studymaterials/ https://www.whitman.edu/mathematics/calculus online/chapter15.html
2	https://www.khanacademy.org/math/calculus-home
3	https://www.sac.edu/FacultyStaff/HomePages/MajidKashi/PDF/MATH 150/Bus Calculus.pdf
4	http://nptel.ac.in/courses/111104085/29
5	http://www.math.odu.edu/~inh/Volume-1.PDF http://www.math.odu.edu/~jhh/Volume-2.PDF https://www.math.cmu.edu/~wn0g/2ch6a.pdf
6	https://nptel.ac.in/courses/111/105/111105122/http://www.staff.ttu.ee/~\|pallas/multipleintegrals.pdf
	3
Course Designed By: 1.Dr.C.Janaki 2.Dr.M.Anandhi	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	S	S	S
CO2	S	M	S	S	S	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Reference Books		
1	Solid Geometry- M.L. Khanna(Jainath\& Co Publishers, Meerut)	
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]		
1	$\underline{\text { http:///www.brainkart.com/article/Three-Dimensional-Analytical-Geometry 6453/ }}$	
2	$\underline{\text { http://egyankosh.ac.in/bitstream/123456789/11990/1/Unit-2.pdf }}$	
Course Designed By: 1.Dr.C.Janaki 2.Dr.M.Anandhi		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10
CO1	M	M	S	S	M	S	S	S	S	S
CO2	S	M	S	S	S	S	S	M	S	S
CO3	S	M	S	M	M	M	S	S	S	S
CO4	S	M	S	S	M	S	M	S	S	S
CO5	S	S	S	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code		TRIGONOMETRY, VECTOR CALCULUS AND FOURIER SERIES	L	P	C
Core/Elective/Supportive		Core Paper - IV	5 -	-	4
Pre-requisite		Knowledge In Vector Algebra, Differentiation, Integration	Syllabus Version	2023 - 202	
Course Objectives:					
To enable the students to learn about the expansion of trigonometric, hyperbolic functions, vector calculus and the expansions of Fourier series .					
Expected Course Outcomes:					
On the successful completion of the course, student will be able to:					
Know the expansion of trigonometric functions and hyperbolic functions .				K	1
Acquire the basic knowledge of vector differentiation and vector integration.				K	2
Determine and apply the important quantities associated with vector fields such as the divergence, curl and scalar potential.				K	3
Understand and find Fourier series of a given periodic function.				K	3
Examine line integral, surface integral ,volume integral and inter-relations among them .				K	4
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create					
Unit:1 Expansion In Series $\mathbf{1 5}$ hours					
Expansion in Series - Expansion of $\cos ^{\boldsymbol{n}} \boldsymbol{\theta}, \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \boldsymbol{\theta}$ in a series of cosines and sines of multiples of θ Expansions of $\cos \boldsymbol{\theta} \boldsymbol{\theta}, \operatorname{sinn} \boldsymbol{\theta}$ and $\operatorname{tann} \boldsymbol{\theta}$ in powers of sines, cosines and tangents - Expansion of $\sin \theta, \cos \theta$ and $\tan \theta$ in powers of θ-hyperbolic functions and inverse hyperbolic functions.					
迷					
Unit:2		hm Of Complex Quantities And Summation Of Series		hou	
Logarithm of complex quantities - summation of series - when angles are in arithmetic progression $-\mathrm{C}+\mathrm{iS}$, method of summation - method of differences.					
Unit:3		Vector Differentiation		hou	
Scalar and vector fields -Differentiation of vectors - Gradient, Divergence and Curl-Solenoidal and irrotational vectors-Laplacian Operator.					
Unit:4		Vector Integration		hou	
Integration of vectors - line integral - surface integral - Green's theorem in the plane - Gauss divergence theorem - Stoke's theorem - (Statements only) - verification of the above said theorems.					
Unit:5		Fourier Series		hou	
Periodic functions - Fourier series of periodicity 2π - half range series.					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	S	S	M	M	S	S
CO2	S	M	S	S	M	M	M	S	M	S
C03	S	M	S	S	M	M	M	S	S	S
CO4	S	S	S	S	S	S	S	S	S	M
CO5	S	S	S	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	M	S	M	M	S	S
CO2	S	M	S	S	S	S	M	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	M	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline `Course code \& \& STATICS \& L \& T \& P \& C

\hline \multicolumn{2}{|l|}{Core/Elective/Supportive} \& Core Paper - VI \& 3 \& - \& \& 4

\hline \multicolumn{2}{|l|}{Pre-requisite} \& Basic Knowledge in Vector Algebra \& Trigonometric Functions \& Syllab Versio \& \& \&

\hline \multicolumn{7}{|l|}{Course Objectives:}

\hline \multicolumn{7}{|l|}{| 1.To enable the students to realize the nature of forces and resultant forces when more than one force acts on a particle. |
| :--- |
| 2.To know about the conditions of equilibrium of couples and coplanar forces. |}

\hline \multicolumn{7}{|l|}{Expected Course Outcomes:}

\hline \multicolumn{7}{|l|}{On the successful completion of the course, student will be able to:}

\hline \multicolumn{3}{|l|}{Remember the various laws.} \& \& \& K \& 1

\hline \multicolumn{3}{|l|}{Understand the concepts of forces and moments.} \& \& \& \& 2

\hline \multicolumn{3}{|l|}{Understand the concepts of equilibrium.} \& \& \& \& 2

\hline \multicolumn{3}{|l|}{Apply the concepts of forces and moments.} \& \& \& \& 3

\hline \multicolumn{5}{|l|}{Analyze the basics of coplanar forces, equilibrium of forces acting on a rigid body and solve the problems.} \& \& 4

\hline \multicolumn{7}{|l|}{K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create}

\hline \multicolumn{7}{|c|}{-}

\hline Unit:1 \& \multicolumn{2}{|r|}{Law of Forces} \& \& \& hou \&

\hline \multicolumn{7}{|l|}{Forces acting at a point - Parallelogram law-triangle law -Converse of Triangle law- Polygon Law of Forces- Lami's Theorem. .}

\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{| Unit:2 | Resolution and Components of Forces | 9 hours |
| :--- | :--- | :--- |}}

\hline \& \& \& \& \& \&

\hline \multicolumn{7}{|l|}{$(\lambda-\mu)$ theorem -Resolution of forces- Components of a force-Resultant of any number of Coplanar forces acting at a point- Conditions of equilibrium.}

\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{| Unit:3 Parallel Forces, Moment and Couple | 9 hours |
| :--- | :--- | :--- |}}

\hline \& \& \& \& \& \&

\hline \multicolumn{7}{|l|}{Parallel Forces and Moments -Resultant of two parallel forces (Like and unlike)-Conditions of equilibrium of three coplanar forces- Moment of a force- Geometrical representation- Sign of the moment- Unit of moment - Varignon's Theorem on couples-Equilibrium of two couplesEquivalence of two couples.}

\hline Unit:4 \& \& Forces Acting on A Rigid Body \& \& \& hou \&

\hline \multicolumn{7}{|l|}{Coplanar forces acting on a rigid body - Theorem on three coplanar forces in equilibrium .}

\hline Unit:5 \& General Planar F \& onditions of Equilibrium of a System of Corces \& \& \& hou \&

\hline \multicolumn{7}{|l|}{Reduction of a system of coplanar forces to a single force and a couple - necessary \& sufficient conditions of equilibrium only - Equation to the line of action of the resultant.}

\hline \& \& Total Lecture hours \& \& \& hou \&

\hline
\end{tabular}

Text Book	
1	Statics -M.K.Venkataraman (Agasthiar Publications, Trichy, 1999.)
Reference Books	
1	Statics -A.V.Dharmapadam.(S.Viswanathan Printers and Publishing Pvt., Ltd, 1993.)
2	Mechanics -P.Duraipandian and Laxmi Duraipandian.(S.Chand and Company Ltd, Ram Nagar, New Delhi -55, 1985.)
3	Statics -Dr.P.P.Gupta (Kedal Nath Ram Nath, Meerut, 1983-84)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/112/105/112105164/
2	https://nptel.ac.in/courses/122/102/122102004/
3	https://www.khanacademy.org/science/ap-physics-1
	arse Designed By: 1.Ms.A.Karpagam 2.Dr.P.Rajarajeswari

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	S	S	M	M	S	S
CO2	S	M	S	S	M	M	M	M	M	S
CO3	S	M	S	S	M	M	M	S	S	S
CO4	S	S	S	S	S	S	S	M	S	S
CO5	S	S	S	S	M	S	S	S	S	S

[^0]

Reference Books	
1	Operations Research - Prem Kumar Gupta D. S. Hira (S. Chand \& Company Ltd, Ram Nagar, New Delhi ,2014)
2	Operations Research Principles and Problems- S. Dharani Venkata Krishnan(Keerthi publishing house PVT Ltd.1994)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	$\underline{\text { https://nptel.ac.in/courses/111/102/111102012/ }}$
2	$\underline{\text { https://nptel.ac.in/courses/111/104/111104027/ }}$
Course Designed By: 1. Dr.T.Narppasalai Arasu 2. Dr.P.Rajarajeswari	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	M	M	M	S	S
CO2	S	M	S	S	S	S	S	M	M	S
CO3	S	S	S	S	M	M	S	S	S	S
CO4	S	S	S	S	S	S	S	S	M	S
CO5	S	S	S	S	S	S	S	M	S	S

*S-Strong; M-Medium; L-Low

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	S	S	S	S	S
CO2	M	M	M	M	M	S	M	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	M	M	M	M	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	M	M	M	S	S
CO2	S	S	M	M	S	M	M	S	M	S
CO3	S	M	M	M	S	S	M	S	S	S
CO4	S	S	S	S	S	M	S	S	S	M
CO5	S	S	S	S	S	M	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code	PROGRAMMING IN C-(PRACTICAL)	L	T	P	C
Core/Elective/Supportive	Core Paper VIII (Practical)	-		1	1
Pre-requisite	Knowledge in C	Syllabus Version		$\begin{aligned} & \text { 2023- } \\ & 2024 \end{aligned}$	
PRACTICAL LIST					
1. Write a C program to generate ' N ' Fibonacci number. 2. Write a C program to print all possible roots for a given quadratic equation. 3. Write a C program to calculate the statistical values of mean, median. 4. Write a C program to calculate the statistical values of Standard Deviation and variance of the given data. 5. Write a C program to sort a set of numbers. 6. Write a C program to sort the given set of names. 7. Write a C program to find factorial value of a given number ' N ' using recursive function call. 8. Write a C program to find the product of two given matrix					

Text Book	
1	Operations Research - Kanti Swarup, P. K. Gupta, Man Mohan (S. Chand \& Sons Education Publications, New Delhi, 12th Revised edition,2003)
Reference Books	
1	Operations Research - Prem Kumar Gupta D. S. Hira (S. Chand \& Company Ltd, Ram Nagar, New Delhi,2014)
2	Operations Research Principles and Problems- S. Dharani Venkata Krishnan (Keerthi publishing house PVT Ltd.1994)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/102/111102012/
2	https://youtu.be/zADj0k0waFY https://youtu.be/xvDdrswAj8M https://www.youtube.com/watch? $\mathrm{v}=\mathrm{xVPoWkkQTrQ}$ https://www.youtube.com/watch?v=7kDtTAnvuww https://www.youtube.com/watch?v=IfLsPHKk51w
3	https://nptel.ac.in/courses/109/103/109103021/
4	https://nptel.ac.in/courses/110/105/110105082/ https://nptel.ac.in/courses/110/106/110106045/
	urse Designed By: 1. Dr.T.Narppasalai Arasu 2. Dr.P.Rajarajeswari

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	S	M	S	M	M	M	S	S
CO2	M	M	M	M	S	S	M	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	M	S	M	S	M	S	M

*S-Strong; M-Medium; L-Low

Introduction -the field axioms, the order axioms -integers - the unique Factorization theorem for integers -Rational numbers -Irrational numbers -Upper bounds, maximum Elements, least upper bound -the completeness axiom -some properties of the supremum -properties of the integers deduced from the completeness axiom- The Archimedean property of the real number system -Rational numbers with finite decimal representation of real numbers -absolute values and the triangle inequality -the Cauchy-Schwarz inequality -plus and minus infinity and the extended real number system.

Unit:2	Basic Notions of a Set Theory.	15 hours
Notations -ordered pairs -Cartesian product of two sets - Relations and functions - further		
terminology concerning functions -one-one functions and inverse -composite functions -		
sequences - similar sets-finite and infinite sets -countable and uncountable sets -uncountability of		
the real number system - set algebra -countable collection of countable sets.		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	S	S	M	M	M	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Course code	COMPLEX ANALYSIS - I	L	T	P	C
Core/Elective/Supportive	Core Paper - X	6	-	-	4
Pre-requisite	Knowledge in Calculus	Syllabus Version	$\mathbf{2 0 2 3}-$ $\mathbf{2 0 2 4}$		

Course Objectives:

To equip the students with the understanding of the fundamental concepts of complex functions, analyticity , power series and complex integration.

Expected Course Outcomes:			
On the successful completion of the course, student will be able to:			
1	Learn techniques of complex analysis effectively to establish mathematical results.	K1	
2	Recognize the simple and multiple connected domains.	K2	
3	Investigate a function for its analyticity and find it series development.	K3	
4	Examine the relationship between conformal mapping and analytic functions	K4	
5	Compute contour integrals directly and by the fundamental theorem.	K4	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Unit:1	Complex Plane	18 hours
Complex number system -Field of Complex numbers - Scalar multiplication of a complex number - Conjugation - Absolute value of a complex number-Inequalities in terms of moduli Elementary Transformations i) $\mathrm{w}=\mathrm{z}+\alpha$ ii) $\mathrm{w}=\mathrm{az}$ iii) $\mathrm{w}=1 / \mathrm{z}$. Fixed points -cross-ratioinvariance of cross-ratio under bilinear transformation-Definition of extended complex plane Stereographic projection.		
Unit:2	Analytic Function	18 hours
Complex Functions- Limit of a function - continuity - differentiability - Analytical function defined in a region -necessary conditions for differentiability -sufficient conditions for differentiability -Cauchy-Riemann equation in polar coordinates -Definition of entire function.		

Unit:3 \quad Power Series and Elementary Functions

18 hours
Absolute convergence-circle of convergence-Analyticity of the sum of power series in the Circle of convergence (term by term differentiation of a series). Elementary functions: Exponential, Logarithmic, Trigonometric and Hyperbolic functions.

Unit:4	Harmonic Functions and Conformal Mapping	18 hours
Conjugate Harmonic functions: Definition and determination. Conformal Mapping: Isogonal		
mapping -Conformal Mapping-Mapping $z \rightarrow f(z)$, where f is analytic, particularly the mappings.		
$w=e^{z}: w=z^{2} ; w=\sin z ; w=\cos z ; w=z+1 / z$.		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	M	S	S	M	M	M	S	S
CO2	S	M	M	M	M	S	M	S	S	S
CO3	S	S	M	S	S	S	S	S	S	S
CO4	S	S	M	S	M	S	S	S	S	S
CO5	S	S	S	S	M	S	S	S	S	M

[^1]

Course code	MODERN ALGEBRA - I	L	T	P	C
Core/Elective/Supportive	Core Paper - XI	6	-	-	4
Pre-requisite	Higher Secondary Level Mathematics	Sylla Vers			
Course Objectives:					
Focuses on the concepts of algebraic structures which is one of a pillar of modern Mathematics and emphasis on their properties and applications.					
Expected Course Outcomes:					
On the successful completion of the course, student will be able to:					
Recall the properties and extend group structure to finite permutation groups.				K	1
Explain the concepts of homomorphism, isomorphism and automorphism.				K	
Demonstrate abstract thinking capacity and ability to prove theorems.				K	3
Compare features of different algebraic structures.				K	
Examine the properties of algebraic structures and their role in applied contexts.				K	4
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create					
Unit:1	Groups and its Basic Properties	18 hours			
Sets - mappings - Relations and binary operations - Groups: Abelian group, Symmetric group Definitions and Examples - Basic properties.					
Subgroups - Cyclic subgroup - Index of a group - Order of an element - Fermat theorem - A Counting Principle - Normal Subgroups and Quotient Groups.					
Unit:3 Automorphisms 18 hours Homomorphisms (Applications 1 and 2 are omitted) -Automorphisms - Inner automorphism - Cayley's theorem, permutation groups.					
Definition and Examples -Some Special Classes of Rings - Commutative ring - Field - Integral domain - Homomorphisms of Rings.					
Unit.5 Ideals and Quotient Rings 18 hours					
Ideals and Quotient Rings - More Ideals and Quotient Rings - Maximal ideal - The field of Quotients of an Integral Domain.					
	Total Lecture hours			00 ho	

Text Book						

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10
CO1	S	M	M	S	M	S	S	M	S	S
CO2	M	M	S	S	M	S	S	S	S	S
CO3	S	M	M	S	S	S	S	S	S	S
CO4	S	M	M	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

[^2]

COs	PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO10
CO1	M	S	S	S	M	S	M	M	S	S
$\mathrm{CO2}$	S	M	S	S	M	S	S	S	S	S
CO3	S	M	S	S	M	S	M	S	S	S
$\mathrm{CO4}$	S	M	S	S	S	S	S	S	S	S
$\mathrm{CO5}$	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Reference Books		
1	Operations Research - Prem Kumar Gupta\& D. S. Hira (S. Chand \& Company Ltd, Ram Nagar, New Delhi ,2014)	
2	Operations Research Principles and Problems- S. Dharani Venkata Krishnan (Keerthi publishing house PVT Ltd ,1994)	
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]		
1	$\underline{\text { https://nptel.ac.in/courses/111/107/111107104/ }}$	
2	$\underline{\text { https://nptel.ac.in/courses/111/102/111102012/ }}$	
3	$\underline{\text { https://nptel.ac.in/courses/111/104/111104027/ }}$	
4	https://nptel.ac.in/courses/111/105/111105039/	
Course Designed By: 1. Dr.T.Narppasalai Arasu		
2. Dr.P.Rajarajeswari		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	S	S	S	S	S	S
CO2	S	M	M	M	M	S	S	M	S	S
CO3	S	M	M	S	M	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	M	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	S	S	S	M	S	S
CO2	M	M	M	M	M	S	S	M	S	S
CO3	S	M	M	S	S	S	M	S	S	S
CO4	S	M	M	S	S	S	M	S	S	S
CO5	M	M	S	M	M	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Course code	COMPLEX ANALYSIS - II	L	P	C
Core/Elective/Supportive	Core Paper - XIV	5		
Pre-requisite	Knowledge in Analytic Functions, Complex Integration.	Syllabus Version		
Course Objectives				
To familiarize the students with some fundamental theorems, singularity, residues in complex functions, integrations of complex functions, meromorphic functions and their applications.				
Expected Course Outcomes:				
On the successful completion of the course, student will be able to:				
To recognize and apply the Liouville's theorem, the mean-value property of a function and the maximum modulus principle.				1
Demonstrate understanding and appreciation of deeper aspects of complex analysis.				
Apply residue theorem to compute integrals.				3
Ability to think critically by proving mathematical conjectures and establishing theorems from complex analysis.				
Classify the nature of singularity, poles and residues.				
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create				
Unit:1	Integral Theorems		hou	
Results based on Cauchy's theorem(I)-Zeros-Cauchy's Inequality - Liouville's theorem Fundamental theorem of algebra -Maximum modulus theorem -Gauss mean value theorem Gauss mean value theorem for a harmonic function on a circle.				
Unit:2	Taylor's Series and Laurent's Series		hou	
Results based on Cauchy's theorem(II)-Taylor's series -Laurent's series.				
Unit:3	Singularities and Residues		hou	
Isolated singularities (Removable Singularity, pole and essential singularity) -Residues -Residue theorem.				
Unit:4 Real Definite Integrals 15 hours				
Evaluation using the calculus of residues - Integration on the unit circle -Integral with - ∞ and $+\infty$ as lower and upper limits with the following integrals: i) $\mathrm{P}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})$ where the degree of $\mathrm{Q}(\mathrm{x})$ exceeds that of $\mathrm{P}(\mathrm{x})$ at least 2 . ii) $(\sin a x) \cdot f(x),(\cos a x) \cdot f(x)$, where $a>0$ and $f(z) \rightarrow 0$ as $z \rightarrow \infty$ and $f(z)$ does not have a pole on the real axis. iii) $f(x)$ where $f(z)$ has a finite number of poles on the real axis. Integral of the type $\int_{0}^{\infty} \frac{x^{a-1}}{1+x} d x, 0<\mathrm{a}<1$.				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	M	S	S	M	S	S
CO2	S	S	M	S	M	S	M	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	M	S	S	S	S	S
CO5	S	M	M	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	S	S	M	S	S
CO2	M	M	S	S	M	S	M	M	S	S
CO3	S	M	S	S	M	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Course code	OPERATIONS RESEARCH - PAPER -IV	L	T \mathbf{P}	C
Core/Elective/Supportive	Skill Based Subject	3		
Pre-requisite	Knowledge in Basics of Operations Research	Syll Ver	$\begin{array}{l\|l} \hline \mathrm{SO} \\ & 20 \\ \hline \end{array}$	
Course Objectives:				
To enhance the students' knowledge in decision analysis, sequencing of the jobs to be carried out based on cost optimization, replacement policies and analyze the cases according to their categories.				
Expected Course Outcomes:				
On the successful completion of the course, student will be able to:				
Know the principles and applications of information theory.				1
To understand sequencing, replacement problems.				2
Demonstrate skills to achieve their objective using sequencing models.				
Apply decision making under different business environments.				4
Determine a solution to a rectangular game using simplex method.				3
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create				
Unit:1	Decision Analysis		9 ho	
Decision Making environment - Decisions under uncertainty - Decision under risk - Decision Tree Analysis.				
Unit:2				
	Sequencing Problems		9 ho	
Introduction-problem of sequencing - basic terms used in sequencing- processing n-jobs through 2 machines - processing n -jobs through k machines - processing 2 jobs through k machines (Problems only).				
Unit:3	Replacement Problems		9 ho	
Introduction - Replacement of equipment / assets that deteriorates gradually - replacement of equipment that fails suddenly and problems.				
Unit:4	Information Theory		9 ho	
Introduction- A measure of Information-Axiomatic Approach to Information- Entropy-The expected information- Some properties of entropy function-Joint and conditional entropies				
Unit:5	Applications			
General solution of (mxn) rectangular games using simplex method - Reliability and system failure rates using replacement problems.				
Total Lecture hours				
			45 ho	

Text Book	
1	Operations Research -Kanti Swarup, P. K. Gupta, Man Mohan (S.Chand \& sons education publications ; New Delhi,2003)
Reference Books	
1	Operations Research - P K Gupta \& D S Hira (S. Chand and company ltd. Ram Nagar; New Delhi,2014.)
2	Operations Research principles problems - S Dharani Venkata Krishnan (keerthi publishing house Pvt. Ltd.1994)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
,	https://nptel.ac.in/courses/117/104/117104129/
2	https://nptel.ac.in/courses/110/105/110105082/
3	https://nptel.ac.in/courses/110/106/110106045/
Course Designed By: 1. Dr.T.Narppasalai Arasu 2. Dr.P.Rajarajeswari	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	S	S	S	S	S	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	M
CO5	S	M	M	S	S	S	S	S	M	S

*S-Strong; M-Medium; L-Low

Courses

Text Book	
1	Astronomy-S.Kumaravelu and Susheela Kumaravelu (TextPublisher: Sivakasi: Janki7 th Edition 1986)
Course Designed By: 1. Ms. S.Sobia	
2. Mr.M.Balasankar	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	M	M	M	S	S	S	S	M	S	M
CO3	M	M	M	M	M	S	M	S	S	S
CO4	S	S	M	S	S	S	S	S	S	S
CO5	S	M	M	S	S	S	M	S	M	S

*S-Strong; M-Medium; L-Low

Text Books	
1	Numerical methods -Kandasamy. P, Thilagavathy. K and Gunavathy. K (S. Chand and Company Ltd, New Delhi - Revised Edition 2007.)(Chapters: 3,4,5,6,7 and 8)
2	Introductory Methods of Numerical Analysis-S.S. Sastry (Prentice Hall of India Pvt. Ltd.New Delhi-110001Fourth Edition, 2006)
Reference Books	
1	Numerical Methods in Science and Engineering -Venkataraman M. K.(National Publishing company V Edition 1999.)
2	Numerical Methods for Scientists and Engineers -Sankara Rao K .(2ndedition Prentice Hall India 2004.)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	http://www.simumath.com/library/book.html?code=Alg Equations Examples
2	http://jupiter.math.nctu.edu.tw/~smchang/9602/NA lecture note.pdf http://www.iosrjournals.org/iosr-jm/papers/Vol6-issue6/J0665862.pdf
3	https://nptel.ac.in/courses/122/102/122102009/ https://nptel.ac.in/courses/111/107/111107105/
	urse Designed By: 1. Dr.C.Janaki 2. Dr.P.Rajarajeswari

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	M	M	S	M	S	S
CO2	S	S	S	M	S	S	M	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	M	S
CO5	S	M	S	S	M	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Text Book	
1	Astronomy-Mr.S.Kumaravelu and Susheela Kumaravelu. (Text publisher: Sivakasi: Janki, edi edition,1986)
Course Designed By: 1. Ms. S.Sobia 2. Mr.M.Balasankar	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	M	M	S	M	M	S	M	M	M	S
CO3	M	M	S	S	S	S	M	S	S	S
CO4	S	M	S	S	S	S	M	S	S	S
CO5	S	M	S	S	M	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Text Books	
1	Numerical methods - Kandasamy. P, Thilagavathy. K and Gunavathy. K (S. Chand and Company Ltd, New Delhi - Revised Edition 2007.)(Chapters: 9,10,11,Appendix and Appendix E)
2	Introductory Methods of Numerical Analysis-S.S. Sastry (Prentice Hall of India Pvt. Ltd.NewDelhi-110001Fourth Edition,2006)
Reference Books	
1	Numerical Methods in Science and Engineering -Venkataraman M. K.(National Publishing company V Edition 1999.)
2	Numerical Methods for Scientists and Engineers -Sankara Rao K. (Prentice Hall India, $2^{\text {nd }}$ Edition 2004)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	http://nptel.ac.in/courses/104101002/downloads/lecturenotes/module 1/chapter6.pdf https://www.britannica.com/science/difference-equation
2	https://nptel.ac.in/courses/122/102/122102009/
3	https://nptel.ac.in/courses/111/107/111107063/
	rse Designed By: 1. Dr.C.Janaki 2. Dr.P.Rajarajeswari

COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	S	S	S	M	S	S
CO2	M	M	S	S	M	S	M	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	M	M	S	M	S	S	S
CO5	S	M	S	M	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code	GRAPH THEORY	L	T \mathbf{P}	P	C
Core/Elective/Supportive	ELECTIVE III - A	5	-	-	4
Pre-requisite	Knowledge In Basic Mathematics	Syllabus 2023- Version 2024			
Course Objectives:					
Enables the students to learn the basic concepts of Graphs, sub-graphs, Eulerian graphs, Digraphs tournaments, connectivity, graphs, matrix representation of graphs, trees, planar graphs.					
Expected Course Outcomes:					
On the successful completion of the course, student will be able to:					
Identify the properties of different types of graph and their application.				K	1
Demonstrate knowledge of basic concepts in graph theory				K	2
Understand cut graphs, cycle spaces				K	2
Apply principles and concepts of graph theory in practical situations.				K	3
Analyze the concepts of Planar graphs.				K	4
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create					
Unit:1	Graphs	15 hours			
Graphs -Sub graphs - Degree of a vertex walks, paths and cycles in a Graphs - connectedness cut vertex and cut edge.					
7) ¢icker					
Unit:2	Euler and Hamiltonian Graphs	15 hours			
Euler and Hamiltonian Graphs - Algorithm for Euler circuits - Bipartite Graphs -Trees.					
Unit:3	Cut set graphs		15 h	hou	
Matrix representation of a graph - vector spaces, associated with a graph - cycle spaces and cut set graphs.					
Unit:4	Planar graphs			hou	
Planar graphs - Euler's theorem on planar graphs - characterization of planar graphs (no proofs) of the difficult part of the characterization.					
	Total Lecture hours		75 h	hou	

Text Book	
1	A First Course in Graph Theory - A.Choudum (Macmillan,2001) Chapters 1 to 7.
Reference Books	
1	Graph theory with applications to Engineering and computer science-Narsingh Deo (Prentice Hall of India1979).
2	Graph Theory -Frank Harary (Narosa Publishing HQCK 2001).
3	Introduction to Graph Theory- Dr. M. Murugan.(Muthali Publishing House,2005)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/106/111106102/
2	https://www.digimat.in/nptel/courses/video/106104170/L19.htm
Course Designed By: 1. Dr.T.Narppasalai Arasu 2. Dr.C.Janaki	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	M	M	M	S	S	S	M	M	M	S
CO3	M	M	M	S	M	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	M	M	S	M	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Text Book	
1	Formal Languages and Automata- Rani Siromoney. (Revised edition 1984) (Published by the Christian Literary Society, Madras-3) Chapters 1 to 6.
Reference Books	
1	Formal languages and their relation automata-J.E. Hopcroft and D.Ullman (Addison Wesley1969)
2	Automata theory: Machines and Languages-Richard .Y.Kain (McGraw Hill1972)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/106/103/106103070/
2	$\underline{\text { https://www.digimat.in/nptel/courses/video/111103016/L02.html }}$
	urse Designed By: 1. Dr.T.Nandhagopal 2. Ms.S.Kavunthi

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	S	M	S	S	S	S	M	M	M	S
CO3	M	M	S	S	S	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	M	S	M	S	S
CO2	M	M	M	M	S	S	S	M	S	S
CO3	S	S	S	S	S	S	M	S	S	S
CO4	S	S	S	M	S	S	S	S	S	S
CO5	S	S	S	M	S	M	S	S	S	M

[^3]| Course code | PROGRAMMING IN C++ (PRACTICAL) | L | T | P | C |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Core/Elective/Supportive | ELECTIVE III - C(Practical) | - | - | 1 | 1 |
| Pre-requisite | Knowledge in C++ | Syllabus
 Version | | $\begin{aligned} & \text { 2023- } \\ & 2024 \end{aligned}$ | |
| PRACTICAL LIST | | | | | |
| 1. Write a function 'power()'to raise a number ' m ' to a power ' n '. The function takes a 'double' value for ' m ' and 'int' value for ' n ', and returns the result correctly. Use a default vale of 2 for ' n ' to make the function to calculate squares when this argument is omitted. Write a main() that gets the values of ' m ' and ' n ' from the user to test the function. | | | | | |
| 2. Write a program to compute compound interest of a given amount AMT for ' n ' years. Use function overloading so that the program gets input of interest rate RATE in any of the data type 'float' or 'int' | | | | | |
| 3. Create a class which consist of employee detail ENO, ENAME, DEPT, BASIC SALARY. Write a member function to get and display them. Derive a class PAY from the above class and write a member function to calculate DA, HRA and PF depending on the grade and display the pay slip in a neat format using console I/O | | | | | |
| 4. Define two classes POLAR and RECTANGLE to represent points in the polar and rectangle system. Write a program to convert from one system to another. | | | | | |
| 5. Create a class FLOAT that contains one float data member. Overload all the four arithmetic operators so that they operate on the objects of FLOAT. | | | | | |

	xt Book
1	Elementary Number theory -David M. Burton (W.M.C. Brown Publishers, Dubuque, Lawa, 1989.)
Reference Books	
1	An Introduction to theory of Numbers -Ivan Niven and H. Zuckerman ($5^{\text {th }}$ edition, Wiley 1991)
2	Elements of Number Theory - Prof. S.Kumaravelu and Susheela Kumaravelu (Raja Sankar offset Printers, Siva kasi, 2002)
3	Beginning Number Theory -Neville Robinns ($2^{\text {nd }}$ Ed., Narosa Publishing House Pvt. Ltd., Delhi, 2007)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/103/111103020/ https://nptel.ac.in/courses/111/101/111101137/
Course Designed By: 1.Dr.C.Janaki 2. Dr.M.Anandhi	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	S	S	S	M	S	S	S	M	M	S
CO3	M	M	M	M	M	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	M	S	S	S	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Course code	INTRODUCTION TO INDUSTRY 4.0	L	T	P	C
Core/Elective/Supportive	ELECTIVE III - E	5	-		4
Pre-requisite	Basic Knowledge of Computer and Internet	Syllabus Version		$\begin{aligned} & 2023- \\ & 2024 \\ & \hline \end{aligned}$	
Course Objectives:					
1. Artificial Intelligence 2. Big Data and Data Analytics 3. Internet of Things					
Expected Course Outcomes:					
On the successful completion of the course, student will be able to:					
Know the reason for adopting Industry 4.0 and Artificial Intelligence.					
Understand the need for digital transformation.					
Apply the industry 4.0 tools.					
Analyze the applications of Big Data					
Examine the applications and security of IoT Applications.					
K1 - Remember, K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create					
Unit:1	Industry 4.0			hou	
Need - Reason for Adopting Industry 4.0 - Definition - Goals and Design Principles Technologies of Industry 4.0 - Big Data - Artificial Intelligence (AI) - Industrial Internet of Things - Cyber Security - Cloud - Augmented Reality.					
Unit:2	Artificial Intelligence			hou	
Artificial Intelligence: Artificial Intelligence (AI) - What \& Why? - History of AI - Foundations of AI -The AI -environment - Societal Influences of AI - Application Domains and Tools Associated Technologies of AI - Future Prospects of AI - Challenges of AI.					
Unit:3	Big Data and IoT			hou	
Big Data : Evolution - Data Evolution - Data : Terminologies - Big Data Definitions - Essential of Big Data in Industry 4.0-Big Data Merits and Advantages - Big Data Components : Big Data Characteristics - Big Data Processing Frameworks - Big Data Applications - Big Data Tools - Big Data Domain Stack : Big Data in Data Science - Big Data in IoT - Big Data in Machine Learning - Big Data in Databases - Big Data Use cases Big Data in Social Causes - Big Data for Industry -Big Data Roles and Skills -Big Data Roles - Learning Platforms; Internet of Things (IoT) : Introduction to IoT - Architecture of IoT - Technologies for IoT - Developing IoT Applications Applications of IoT - Security in IoT .					

Unit:4		Applications and Tools of Industry 4.0							15 hours	
Applications of IoT - Manufacturing - Healthcare - Education - Aerospace and Defense Agriculture - Transportation and Logistics - Impact of Industry 4.0 on Society: Impact on Business, Government, People. Tools for Artificial Intelligence, Big Data and Data Analytics, Virtual Reality, Augmented Reality, IoT, Robotics.										
Unit:5		Jobs 2030								15 hours
Industry 4.0 - Education 4.0 - Curriculum 4.0 - Faculty 4.0 - Skills required for Future - Tools for Education - Artificial Intelligence Jobs in 2030 - Jobs 2030 - Framework for aligning Education with Industry 4.0 .										
						Total Lecture hours				75 hours
Text Book										
1 $\begin{array}{l}\text { Higher Education for Industry } 4.0 \text { and Transformation to Education } 5.0 \text { (2021) - P.Kaliraj \& } \\ \text { T. Devi }\end{array}$										
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]										
1 年tps://nptel.ac.in/courses/106/105/106105195/										
					$\underline{\sim}$	-				
Course Designed By: 1.Dr.C.Janaki 2 Dr.T.Nandhagopal										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	M	M	M	S	S	S	S	M	M	S
CO3	S	S	S	S	S	S	S	S	S	M
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	M	S	M	S	S	S	S	S	S

[^4]
B. Sc.MATHEMATICS

Syllabus

(2022-2023)

Program Code : 22A

DEPARTMENT OF MATHEMATICS

(Affiliated Colleges)
Bharathiar University
(A State University, Accredited with "A" Grade by NAAC and $13^{\text {th }}$ Rank among Indian Universities by MHRD-NIRF)

Coimbatore 641 046, INDIA

Program Educational Objectives (PEOs)

The B. Sc. Mathematics program describe accomplishments that graduates are expected to attain within five to seven years after graduation

PEO1	Acquire knowledge in functional areas of Mathematics and apply in all the fields of learning.
PEO2	Recognise the need for life long learning and demonstrate the ability to explore some mathematical content independently.
PEO3	Employ mathematical ideas encompassing logical reasoning, analytical, numerical ability , theoretical skills to model real-world problems and solve them.
PEO4	Develop critical thinking, creative thinking, self confidence for eventual success in career.
PEO5	Analyze, interpret solutions and to enhance their Entrepreneurial skills, Managerial skill and leadership
PEO6	To prepare the students to communicate mathematical ideas effectively and develop their ability to collaborate both intellectually and creatively in diverse contexts.
PEO7	Rewarding careers in Education, Industry, Banks, MNCs and pursue higher studies

Program Specific Outcomes (PSOs)	
After the successful completion of B. Sc. Mathematics program, the students are expected to	
PSO1	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for extended learning.
PSO2	Identify the applications of Mathematics in other disciplines and society.
PSO3	Develop an in-depth knowledge in Mathematics appreciating the connections between theory and its applications .
PSO4	Demonstrate their mathematical modeling ability, problem solving skills, creative talent and power of communication necessary for various kinds of employment.
PSO5	Develop mathematical aptitude and the ability to think abstractly.
PSO6	Learn independently and improve ones performance.
PSO7	Students are equipped to appear competitive examinations.

Program Outcomes (POs)	
On successful completion of the B. Sc. Mathematics program	
PO1	Students are empowered with analytical and logical skills-to formulate results and construct mathematical argument.
PO2	Ability to organize, analyze and interpret data accurately in both academic and non -academic context.
PO3	Demonstrate effective communication of mathematical ideas and creative thinking skills to facilitate solving real world problems as a team and independently.
PO4	Appreciate and identify the connections between Mathematics and other disciplines.
PO5	Competency to obtain employment in education, public and private sectors.. PO6Identify the area of interest for extended learning from the understanding gained from the domain and allied areas of Mathematics.
PO7	Develop mathematical aptitude and make critical observations.
PO8	Garner innovative ideas to face global challenges.
PO9	Instill a sense of responsibility in tackling professional and social issues ethically.
PO10	Trigger their passion for research in unexplored areas of Mathematics.

BHARATHIAR UNIVERSITY:COIMBATORE 641046

B. Sc. Mathematics Curriculum (Affiliated Colleges)

(CBCS PATTERN)
(For the students admitted from the academic year 2022-2023and onwards)

Scheme of Examination

Part	Title of the Course	Hours/ Week	Examination				Credits
			会	Maximum Marks			
				CIA	CEE	Total	
	Semester I						
I	Language - I	6	3	50	50	100	4
II	English - I	6	3	50	50	100	4
III	Core Paper I - Classical Algebra	4	3	50	50	100	4
III	Core Paper II-Calculus	5	3	50	50	100	4
III	Allied A : Paper I Chosen by the college	7	3	50	50	100	4
IV	Environmental Studies*	2	3	-	50	50	2
	Total	30		250	300	550	22
	Semester II						
I	Language - II	6	3	50	50	100	4
II	English - II	4	3	25	25	$50^{\text {@@ }}$	2
II	Effective English :Language Proficiency for Employability http://kb.naanmudhalvan.in/Special :Filepath/Cambridge_Course_Detai ls.pdf	2	-	25	25	$50^{\text {\#\# }}$	2
III	Core Paper III - Analytical Geometry	4	3	50	50	100	4
III	Core Paper IV-Trigonometry, Vector Calculus and Fourier Series	5	3	50	50	100	4
III	Allied A: Paper II Chosen by the College	7	3	50	50	100	4
IV	Value Education - Human Rights*	2	3	-	50	50	2
	Total	30		250	300	550	22
	Semester III						
I	Language - III	6	3	50	50	100	4
II	English - III	6	3	50	50	100	4
III	Core Paper V- Differential Equations and Laplace Transforms.	3	3	50	50	100	4
III	Core Paper VI- Statics	3	3	50	50	100	4

III	Allied B : Paper I - Chosen by the college	7	3	30	45	75	3
IV	Skill based Subject - Operations Research -I	3	3	25	25	50 @	2
IV	Digital Skills for Employability	-	-	25	75	100	2
IV	Tamil** / Advanced Tamil* (OR) Non-major elective - I (Yoga for Human Excellence)* / Women's Rights*	2	3		50	50	2
	Total	30		280	395	675	25
	Semester IV						
I	Language - IV	5	3	50	50	100	4
II	English - IV	5	3	50	50	100	4
III	Core Paper VII-Dynamics	3	3	50	50	100	4
III	Core Paper VIII- Programming in C Core Paper VIII -Programming in C Practical	2	3	30	45	75	3
III		1	3	10	15	25	1
III	Allied B - Paper II Chosen by the college	5	3	30	45	75	3
III	Allied B - Paper II Chosen by the college (For Practical Paper)	2	3	25	25	50	2
IV	Skill based Subject - Operations Research - Paper II	3	3	25	25	$50^{\text {@@ }}$	2
IV	Office Fundamentals :Digital Skills for Employability http://kb.naanmudhalvan.in/Specia I:Filepath/Microsoft Course Detail s.xlsx	2	-	25	25	$50^{\# \#}$	2
IV	Tamil**/Advanced Tamil* (OR) Non-major elective -II (General Awareness*)	2	3		50	50	2
	Total	30		295	380	675	27
	Semester V						
III	Core Paper IX-Real Analysis-I	5	3	50	50	100	4
III	Core Paper X- Complex Analysis-I	6	3	50	50	100	4
III	Core Paper XI- Modern AlgebraI	6	3	50	50	100	4
III	Core Paper XII- Discrete Mathematics	5	3	50	50	100	4
III	Elective I	5	3	30	45	75	3
IV	Skill based Subject - Operations Research - Paper III	3	3	25	25	50@@	2

IV	Computational Intelligence for Employability	-	-	25	75	100	2
	Total	30		280	345	625	23
	Semester VI						
III	Core Paper XIII - Real AnalysisII	5	3	50	50	100	4
III	Core Paper XIV - Complex Analysis-II	5	3	50	50	100	4
III	Core Paper XV -Modern Algebra-II	5	3	50	50	100	4
III	Elective II	5	3	30	45	75	3
III	Elective III	5	3	50	50	100	4
IV	Skill Based Subject - Operations Research- Paper IV	3	3	25	25	$50^{\text {@ }}$	2
IV	Project Based learning 2-Advanced Platform Technology -(Govt(auto) \& Govt (Non-Auto)) / Data Analytics \& Visualization Aided (Non-auto) \& SF(Non-Auto) http://kb.naanmudhalvan.in/Bharat $\underline{\text { hiar_University_(BU) }}$	2	-	25	25	$50^{\# \#}$	2
V	Extension Activities ** / Swachh Bharath @			50		50	2
	Total	30		330	295	625	25
	Grand Total	180		1685	2015	3700	144
\#All computer papers have theory and practical exams							
	Theory			30	45	75	100
	Practicals			10	15	25	
Note							
${ }^{\text {\#\# }}$ Naan Mudhalvan -Courses- external 25 marks will be assessed by Industry and internal will be offered by respective course teacher.							
* No Continuous Internal Assessment (CIA). Only University Examinations							
** No University Examinations. Only Continuous Internal Assessment (CIA).							
${ }^{@}$ Swachh Bharath Internship Scheme (SBIS) is to be added for 2 credits in the extension activities.							
${ }^{\text {@@ }}$ University semester examination will be conducted for 50 marks (As per existing pattern of Examination) and it will be converted for 25 marks.							
Allied Subjects(Colleges can choose any two subjects)							
1.Physics 2. Chemistry3.Accountancy 4.Statistics.							
List of Elective papers							
(Colleges can choose any one of the paper as electives)							
Elective - I		A	Atro	y - I			
		B		-Met	hods-I		

Elective - II	\mathbf{A}	Astronomy-II
	\mathbf{B}	Numerical Methods-II
	\mathbf{A}	Graph Theory
	\mathbf{B}	Automata Theory \& Formal Languages
	\mathbf{C}	Programming in C++ ${ }^{\text {\# }}$
	\mathbf{D}	Number Theory
	\mathbf{E}	Introduction to Industry 4.0

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	M	S	S	S	S	M	S	S
CO2	S	M	M	M	S	S	S	M	M	S
CO3	S	M	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Reference Books	
1	Mathematics for BSc - Vol I and. II - P. Kandasamy \&K.Thilagarathy(S.Chand and Co-2004)
2	A Text book of calculus- Shanthi Narayanan \&J.N.Kapoor(S.Chand\& Co.2014)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://ocw.mit.edu/resources/res-18-006-calculus-revisited-single-variable-calculus-fall-2010/studymaterials/ https://www.whitman.edu/mathematics/calculus online/chapter15.html
2	https://www.khanacademy.org/math/calculus-home
3	https://www.sac.edu/FacultyStaff/HomePages/MajidKashi/PDF/MATH_150/Bus_Calculus.pdf
4	http://nptel.ac.in/courses/111104085/29
5	http://www.math.odu.edu/~jhh/Volume-1.PDF http://www.math.odu.edu/~jhh/Volume-2.PDF https://www.math.cmu.edu/~wn0g/2ch6a.pdf
6	https://nptel.ac.in/courses/111/105/111105122/http://www.staff.ttu.ee/~Ipallas/multipleintegrals.pdf
	urse Designed By: 1.Dr.C.Janaki 2.Dr.M.Anandhi

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	S	S	S
CO2	S	M	S	S	S	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

1	Solid Geometry- M.L. Khanna(Jainath\& Co Publishers, Meerut)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	http://www.brainkart.com/article/Three-Dimensional-Analytical-Geometry 6453/
2	http://egyankosh.ac.in/bitstream/123456789/11990/1/Unit-2.pdf
	ourse Designed By: 1.Dr.C.Janaki 2.Dr.M.Anandhi

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	M	S	S	S	S	S
CO2	S	M	S	S	S	S	S	M	S	S
C03	S	M	S	M	M	M	S	S	S	S
C04	S	M	S	S	M	S	M	S	S	S
C05	S	S	S	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	S	S	M	M	S	S
CO2	S	M	S	S	M	M	M	S	M	S
C03	S	M	S	S	M	M	M	S	S	S
C04	S	S	S	S	S	S	S	S	S	M
CO5	S	S	S	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Unit:5		sforms	
Inverse Laplace Transforms - Applications to solutions Differential Equations with constant coefficients.			
		Total L	
Text Book			
1 $\begin{array}{l}\text { Mathematics for B.Sc - Branch - I Volume III- P.Kandasamy \& K.Thilagavathy } \\ \text { (S. Chand and Company Ltd, New Delhi, 2004.) }\end{array}$			
Reference Books			
1 价Calculus Vol III -S. Narayanan and T.K. Manickavasagam Pillay, (S. Viswanathan Printers and Publishers Pvt. Ltd, Chennai 1991)			
2	Differential Equations -N.P. Bali (Laxmi Publication Ltd, New Delhi, 2004)		
$3 \begin{aligned} & \text { Laplace and Fourier Transforms-Dr. J. K. Goyal and K.P. Gupta (Pragati Prakashan } \\ & \text { Publishers, Meerut, } 2000 \text {) }\end{aligned}$			
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]			
1 https://nptel.ac.in/courses/111105035/			
2	http://www.nptelvideos.in/2012/11/mathematics-iii.html https://www.digimat.in/nptel/courses/video/111108081/L02.html		
3$3 \begin{array}{l}\text { https://www.math.ust.hk/~machas/differential_equations.pdf. } \\ \text { https://www.ijsr.net/archive/v2i1/ijsron2013331.pdf } \\ \text { https://www.whitman.edu/mathematics/calculus_online/chapter17.html }\end{array}$			
Course Designed By: 1.Dr.E.Rameshkumar 2.Ms.S.Kavunthi			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	P09	PO10
CO1	M	M	S	S	M	S	M	M	S	S
CO2	S	M	S	S	S	S	M	M	S	S
C03	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	M	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

\begin{tabular}{|c|c|c|c|c|c|}
\hline `Course code \& \& STATICS \& L \& T \mathbf{P} \& C

\hline \multicolumn{2}{|l|}{Core/Elective/Supportive} \& Core Paper - VI \& 3 \& - \& 4

\hline \multicolumn{2}{|l|}{Pre-requisite} \& Basic Knowledge in Vector Algebra \& Trigonometric Functions \& Syllabus Version \& \&

\hline \multicolumn{6}{|l|}{Course Objectives:}

\hline \multicolumn{6}{|l|}{| 1.To enable the students to realize the nature of forces and resultant forces when more than one force acts on a particle. |
| :--- |
| 2.To know about the conditions of equilibrium of couples and coplanar forces. |}

\hline \multicolumn{6}{|l|}{Expected Course Outcomes:}

\hline \multicolumn{6}{|l|}{On the successful completion of the course, student will be able to:}

\hline \multicolumn{3}{|l|}{Remember the various laws.} \& \& \& K1

\hline \multicolumn{3}{|l|}{2 Understand the concepts of forces and moments.} \& \& \& K2

\hline \multicolumn{3}{|l|}{Understand the concepts of equilibrium.} \& \& \& K2

\hline \multicolumn{3}{|l|}{Apply the concepts of forces and moments.} \& \& \& K3

\hline \multicolumn{4}{|l|}{Analyze the basics of coplanar forces, equilibrium of forces acting on a rigid body and solve the problems.} \& \& 4

\hline \multicolumn{6}{|l|}{K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create}

\hline Unit:1 \& \& Law of Forces \& \& 9 ho \&

\hline \multicolumn{6}{|l|}{Forces acting at a point - Parallelogram law-triangle law -Converse of Triangle law- Polygon Law of Forces- Lami’s Theorem. .}

\hline \multicolumn{6}{|l|}{Unit:2}

\hline \multicolumn{6}{|l|}{$(\lambda-\mu)$ theorem -Resolution of forces- Components of a force- Resultant of any number of Coplanar forces acting at a point- Conditions of equilibrium.}

\hline \multicolumn{6}{|l|}{Unit:3 Parallel Forces, Moment and Couple $\quad 9$ hours}

\hline \multicolumn{6}{|l|}{Parallel Forces and Moments -Resultant of two parallel forces (Like and unlike)-Conditions of equilibrium of three coplanar forces- Moment of a force- Geometrical representation- Sign of the moment- Unit of moment - Varignon's Theorem on couples-Equilibrium of two couplesEquivalence of two couples.}

\hline \multicolumn{6}{|l|}{}

\hline \multicolumn{6}{|l|}{Coplanar forces acting on a rigid body - Theorem on three coplanar forces in equilibrium .}

\hline Unit:5 \& | General |
| :--- |
| Planar F | \& onditions of Equilibrium of a System of Corces \& \& 9 ho \&

\hline \multicolumn{6}{|l|}{Reduction of a system of coplanar forces to a single force and a couple - necessary \& sufficient conditions of equilibrium only - Equation to the line of action of the resultant.}

\hline
\end{tabular}

C0s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10
C01	M	M	M	M	S	S	M	M	S	S
CO2	S	M	S	S	M	M	M	M	M	S
C03	S	M	S	S	M	M	M	S	S	S
C04	S	S	S	S	S	S	S	M	S	S
CO5	S	S	S	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code			Operations Research - Paper I	L	T	P	C
Core/Elective/Supportive			Skill Based Subject	3	-		2
Pre-requisite			Knowledge in Basic Mathematical Concepts	Syllabu Version			
Course Objectives:							
To familiarize students with the basic concepts, models and techniques for effective decision making, model formulation and applications.							
Expected Course Outcomes:							
On the successful completion of the course, student will be able to:							
1	Understand the basic concepts and application of operations research in various fields.						K1
2	Know principles of construction of mathematical models of conflicting situations.						K2
3	Analyze the relationship between a linear program and its dual.						K3
4	Apply techniques constructively to make effective decisions in business and solve problems in industry.						K
5	Build and solve transportation problems.						4
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create							
Unit:1		Basics Of Operations Research and Formulation Of L.P.P				hou	
Basics of O.R - Definition of O.R - Characteristics of O.R - Scientific methods in O.R - Necessary of O.R in Industry - O.R and Decision Making - Scope of O.R in Modern Management-Uses and limitations of O.R .Linear Programming Problem - Formulation of L.P.P.							
Unit:2		Linear Programming Problem -Simplex method				hou	
Graphical solutions of L.P.P - Problems. Simplex Method - Problems.							
Unit:3			Big-M and Two-Phase Method			hou	
Charne's Penalty Method (or) Big - M Method - Two Phase Simplex method - Problems.							
Unit:4 Duality In L.P.P 9 hours							
Duality in L.P.P - Concept of duality - Duality and Simplex Method - Problems.							
Unit:5			Transportation Model			hou	
The transportation Problems - Basic feasible solution by L.C.M - NWC- VAM- optimum solutions - unbalanced Transportation problems.							
Total Lecture hours 45 hours							
Text Book							
1 Operations Research - Kanti Swarup, P. K. Gupta, Man Mohan (S. Chand \& Sons Education Publications, New Delhi, 12th Revised edition-2003)							

Reference Books	
1	Operations Research - Prem Kumar Gupta D. S. Hira (S. Chand \& Company Ltd, Ram Nagar, New Delhi ,2014)
2	Operations Research Principles and Problems- S. Dharani Venkata Krishnan(Keerthi publishing house PVT Ltd.1994)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/102/111102012/
2	https://nptel.ac.in/courses/111/104/111104027/
	ourse Designed By: 1. Dr.T.Narppasalai Arasu 2. Dr.P.Rajarajeswari

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	M	M	M	S	S
CO2	S	M	S	S	S	S	S	M	M	S
C03	S	S	S	S	M	M	S	S	S	S
CO4	S	S	S	S	S	S	S	S	M	S
CO5	S	S	S	S	S	S	S	M	S	S

*S-Strong; M-Medium; L-Low

1	Dynamics -M.K.Venkataraman (11th Ed. Agasthiar Publications, Trichy, 1994.)
Reference Books	
1	Dynamics -A.V.Dharamapadam (S.Viswanathan Printers and Publishers Pvt., Ltd, Chennai, 1998)
2	Dynamics -K.Viswanatha Naik and M.S.Kasi (Emerald Publishers, 1992)
3	Dynamics -Naryanamurthi (National Publishers, New Delhi, 1991)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/115/106/115106119/
2	https://www.askiitians.com/iit-jee-physics/mechanics/motion-of-projectile.aspx
	urse Designed By: 1. Dr.T.Nandhagopal 2. Mr.M.Balasankar

COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	S	S	S	S	S
CO2	M	M	M	M	M	S	M	S	S	S
C03	S	S	S	S	S	S	S	S	S	S
CO4	M	M	M	M	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

[^5]| Course code | PROGRAMMING IN C | L | T | P | C |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Core/Elective/Supportive | Core Paper-VIII | 2 | - | - | 3 |
| Pre-requisite | Higher Secondary Level Mathematics | Syllab Versi | | | |
| Course Objectives: | | | | | |
| To impart the importance of C language, its structure, Data types, Operators of C, Various control statements, Arrays, different types of functions and practical problems. | | | | | |
| Expected Course Outcomes: | | | | | |
| On the successful completion of the course, student will be able to: | | | | | |
| Remember the importance of C language and datatypes. | | | | K1 | |
| Understand the basic structure, operators and statements of C language. | | | | K2 | |
| Understand decision control statements, loop control statements. | | | | K2 | |
| Apply the concepts of data types, operators, expressions, control statements, arrays, character arrays and strings to write the C code for a given algorithm. | | | | K3 | |
| Read, understand and trace the execution of programs written in C language. | | | | K4 | |
| K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create | | | | | |
| Unit:1 Constants, Variables and Data Types | | | | | |
| Introduction - Importance of C- Basic structure of C programme - Character set -Constants Keywords and identifiers - Variables Data types - Declaration of variables - Assigning values to variables -Defining symbolic constants. | | | | | |
| Unit:2 Operators and Expressions $\quad 6$ hours | | | | | |
| Arithmetic operators - Relational operators - logical operators - assignment operators increment and decrement operators -Conditional operators - Special operators - Arithmetic expressions -Evaluation of expressions -Precedence of arithmetic operators - Some computational problems -Type conversion in expressions - operator precedence and associating mathematical functions. | | | | | |
| Unit:3 | Input -Output Operations, Decision Making hing | | | 6 ho | |
| Reading and Writing character - formatted input and output. Decision making with IF statement Simple IF statement - The IF ELSE statement - Nesting of IF ELSE statement - The ELSE IF ladder. The Switch statement -The? Operator -The GOTO statement. | | | | | |
| Unit:4 | Decision Making and Looping | | | 6 ho | |
| The WHILE statement - the DO statement - the FOR statement -Jumps in loops | | | | | |

COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	P08	PO9	P010
CO1	M	M	M	S	S	M	M	M	S	S
CO2	S	S	M	M	S	M	M	S	M	S
CO3	S	M	M	M	S	S	M	S	S	S
CO4	S	S	S	S	S	M	S	S	S	M
CO5	S	S	S	S	S	M	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code	PROGRAMMING IN C-(PRACTICAL)	L	T	P	C
Core/Elective/Supportive	Core Paper VIII (Practical)	-	-	1	1
Pre-requisite	Knowledge in C	Sylla Vers		$\begin{aligned} & 2022- \\ & 2023 \\ & \hline \end{aligned}$	
PRACTICAL LIST					
1. Write a C program to 2. Write a C program to p 3. Write a C program to 4. Write a C program to given data. 5. Write a C program to so 6. Write a C program to s 7. Write a C program to f 8. Write a C program to	nerate ' N ' Fibonacci number. int all possible roots for a given quadratic equation lculate the statistical values of mean, median. lculate the statistical values of Standard Deviatio rt a set of numbers. rt the given set of names. factorial value of a given number ' N ' using re dhe product of two given matrix	d vari ve fu	ctio	of the call.	

		Total Lecture hours

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10
CO1	M	S	S	M	S	M	M	M	S	S
CO2	M	M	M	M	S	S	M	M	M	S
C03	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	M	S	M	S	M	S	M

*S-Strong; M-Medium; L-Low

Course code	REAL ANALYSIS - I	L	T	P	C
Core/Elective/Supportive	Core Paper - IX	5	-	-	4
Pre-requisite	Knowledge in the basic properties of real numbers	Syllabus Version	2022 - 2023		
Course Objectives:					

Course Objectives:

Aimed at exposing the real number systems that underpin the development of real analysis and in understanding various physical phenomena.

Elements of point set topology: Euclidean space R^{n}-open balls and open sets in R^{n}. The structure of open sets in R^{n}-closed sets and adherent points -The Bolzano -Weierstrass theorem -the Cantor Intersection Theorem

Reference Books

1	Methods of Real Analysis -R.R.Goldberg.(NY, John Wiley, New York 1976.)
2	Introduction to Topology and Modern Analysis- G.F.Simmons.(McGraw - Hill, New York, 1963.)
3	A survey of Modern Algebra (3rd Edition)-G.Birkhoff and MacLane.(Macmillan, New York, 1965.)
4	Real Analysis -J.N.Sharma and A.R.Vasishtha.(Krishna Prakashan Media (P) Ltd, 1997)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/105/111105069/\#
2	https://nptel.ac.in/courses/111/101/111101134/
3	https://www.digimat.in/nptel/courses/video/111105098/
4	https://nptel.ac.in/courses/111/106/111106053/
	ourse Designed By: 1. Dr.S.Palaniammal 2. Dr.E.Rameshkumar.

COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	P08	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	S	S	M	M	M	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Course code		COMPLEX ANALYSIS - I	L	T	P	C
Core/Elective/Supportive		Core Paper - X	6	-	-	4
Pre-requisite		Knowledge in Calculus	Syllab Versio			
Course Objectives:						
To equip the students with the understanding of the fundamental concepts of complex functions, analyticity , power series and complex integration.						
Expected Course Outcomes:						
On the successful completion of the course, student will be able to:						
Learn techniques of complex analysis effectively to establish mathematical results.					K	
Recognize the simple and multiple connected domains.					K2	
Investigate a function for its analyticity and find it series development.					K3	
Examine the relationship between conformal mapping and analytic functions					K	
Compute contour integrals directly and by the fundamental theorem.					K	
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create						
Unit:1 Complex Plane 18 hours						
Complex number system -Field of Complex numbers - Scalar multiplication of a complex number - Conjugation - Absolute value of a complex number-Inequalities in terms of moduli Elementary Transformations i) $\mathrm{w}=\mathrm{z}+\alpha$ ii) $\mathrm{w}=\mathrm{az}$ iii) $\mathrm{w}=1 / \mathrm{z}$. Fixed points - cross-ratioinvariance of cross-ratio under bilinear transformation -Definition of extended complex plane Stereographic projection.						
Unit:2 Analytic Functions					ho	
Complex Functions- Limit of a function -continuity -differentiability - Analytical function defined in a region -necessary conditions for differentiability -sufficient conditions for differentiability -Cauchy-Riemann equation in polar coordinates -Definition of entire function.						
					8 ho	
Absolute convergence-circle of convergence - Analyticity of the sum of power series in the Circle of convergence (term by term differentiation of a series). Elementary functions: Exponential, Logarithmic, Trigonometric and Hyperbolic functions.						
Unit:4		onic Functions and Conformal Mappi			8 ho	
Conjugate Harmonic functions: Definition and determination. Conformal Mapping: Isogonal mapping -Conformal Mapping-Mapping $\mathrm{z} \rightarrow \mathrm{f}(\mathrm{z})$, where f is analytic, particularly the mappings. $\mathrm{w}=\mathrm{e}^{\mathrm{z}}: \mathrm{w}=\mathrm{z}^{2} ; \mathrm{w}=\sin \mathrm{z} ; \mathrm{w}=\cos \mathrm{z} ; \mathrm{w}=\mathrm{z}+1 / \mathrm{z}$.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	M	S	S	M	M	M	S	S
CO2	S	M	M	M	M	S	M	S	S	S
CO3	S	S	M	S	S	S	S	S	S	S
CO4	S	S	M	S	M	S	S	S	S	S
CO5	S	S	S	S	M	S	S	S	S	M

*S-Strong; M-Medium; L-Low

		Total Lecture hours	90 hours
Text Book			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	M	S	M	S	S	M	S	S
CO2	M	M	S	S	M	S	S	S	S	S
CO3	S	M	M	S	S	S	S	S	S	S
CO4	S	M	M	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	S	S	M	S	M	M	S	S
CO2	S	M	S	S	M	S	S	S	S	S
CO3	S	M	S	S	M	S	M	S	S	S
CO4	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code			OPERATIONS RESEARCH - PAPER III	L	T	P	C
Core/Elective/Supportive			Skill Based Subject	3	-		2
Pre-requisite			Knowledge in Basics of Operations Research	Syllab Versi		20	
Course Objectives:							
Presents applications and method to solve Integer Programming Problems, Non-linear Programming Problems and Dynamic Programming problems.							
Expected Course Outcomes:							
On the successful completion of the course, student will be able to:							
1	Know the concept of simulation and simulate a queueing system						
2	Understand the overall approach of dynamic programming.						2
3	Solve nonlinear programming problems using Lagrange multiplier and using KuhnTucker conditions.						2
4	Apply concepts in optimal scheduling						3
5	To formulate a model for solving the intractable problems.						4
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create							
Unit:1			Simulation		9	hou	
Introduction-simulation models-Event-Types of simulation- Generation of random numbers-Monte-Carlo simulation- simulation of queueing system.							
Unit:2			Network Scheduling By PERT/CPM			hou	
Introduction- Network and basic components- Rules of Network construction- Time calculation in Networks-CPM. Pert Calculations- Cost Analysis- crashing the network- Problems.							
Unit:3			Integer Programming Problem			hou	
Integer Programming Problem - Gomory's fractional cut Method - Branch and Bound Method.							
Unit:4			Non-linear Programming Problems			hou	
General NLPP - Lagrange multiplier - Hessian bordered Matrix - Kuhn Tucker Condition Problems.							
Unit:5			Dynamic Programming Problem			hou	
Dynamic Programming Problem - Recursive equation approach - D.P.P Algorithm - Solution of L.P.P by D.P.P.							
Total Lecture hours 45 hours							
Text Book							
1 Operations Research - Kanti Swarup, P. K. Gupta, Man Mohan (S. Chand \& Sons							

	Education Publications, New Delhi, 12th Revised edition,2003)
Reference Books	
1	Operations Research - Prem Kumar Gupta\& D. S. Hira (S. Chand \& Company Ltd, Ram Nagar, New Delhi ,2014)
2	Operations Research Principles and Problems- S. Dharani Venkata Krishnan (Keerthi publishing house PVT Ltd ,1994)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/107/111107104/
2	https://nptel.ac.in/courses/111/102/111102012/
3	https://nptel.ac.in/courses/111/104/111104027/
4	https://nptel.ac.in/courses/111/105/111105039/
Course Designed By: 1. Dr.T.Narppasalai Arasu 2. Dr.P.Rajarajeswari	

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	P09	PO10
CO1	M	M	S	S	S	S	S	S	S	S
CO2	S	M	M	M	M	S	S	M	S	S
C03	S	M	M	S	M	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	M	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	S	S	S	M	S	S
CO2	M	M	M	M	M	S	S	M	S	S
CO3	S	M	M	S	S	S	M	S	S	S
CO4	S	M	M	S	S	S	M	S	S	S
CO5	M	M	S	M	M	S	S	S	S	M

[^6]

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10
C01	M	M	M	S	M	S	S	M	S	S
CO2	S	S	M	S	M	S	M	M	M	S
C03	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	M	S	S	S	S	S
CO5	S	M	M	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code	MODERN ALGEBRA - II	L	T	P	C
Core/Elective/Supportive	Core Paper - XV	5	-	-	$\mathbf{4}$
Pre-requisite	Knowledge in Groups, Rings and Fields	Syllabus Version	2022- $\mathbf{2 0 2 3}$		

Course Objectives:

To develop understanding in the domain of matrix theory, vector spaces, linear transformations as well as the principles underlying the subject.

COs	PO1	PO2	PO3	P04	PO5	PO6	P07	PO8	P09	PO10
CO1	M	M	M	M	M	S	S	M	S	S
CO2	M	M	S	S	M	S	M	M	S	S
C03	S	M	S	S	M	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Course code	OPERATIONS RESEARCH - PAPER -IV	L	T \mathbf{P}	C
Core/Elective/Supportive	Skill Based Subject	2		
Pre-requisite	Knowledge in Basics of Operations Research	Sylla Versi	$\begin{aligned} & 202 \\ & 202 \end{aligned}$	
Course Objectives:				
To enhance the students' knowledge in decision analysis, sequencing of the jobs to be carried out based on cost optimization, replacement policies and analyze the cases according to their categories.				
Expected Course Outcomes:				
On the successful completion of the course, student will be able to:				
Know the principles and applications of information theory.				1
To understand sequencing, replacement problems.				2
Demonstrate skills to achieve their objective using sequencing models.				3
Apply decision making under different business environments.				4
Determine a solution to a rectangular game using simplex method.				3
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create				
Decision Making environment - Decisions under uncertainty - Decision under risk - Decision Tree Analysis.				
Unit:2	Sequencing Problems		6 ho	
Introduction-problem of sequencing - basic terms used in sequencing- processing n-jobs through 2 machines - processing n -jobs through k machines - processing 2 jobs through k machines (Problems only).				
Unit:3 \quad Replacement Problems $\quad 6$ hours				
Introduction - Replacement of equipment / assets that deteriorates gradually - replacement of equipment that fails suddenly and problems.				
Unit:4 Information Theory 6 hours				
Introduction- A measure of Information-Axiomatic Approach to Information- Entropy-The expected information- Some properties of entropy function-Joint and conditional entropies				
Unit:5	Applications		6 ho	
General solution of (mxn) rectangular games using simplex method - Reliability and system failure rates using replacement problems.				
Text Book	Total Lecture hours		30 ho	

1	Operations Research -Kanti Swarup, P. K. Gupta, Man Mohan (S.Chand \& sons education publications ; New Delhi,2003)
Reference Books	
1	Operations Research - P K Gupta \& D S Hira (S. Chand and company ltd. Ram Nagar; New Delhi,2014.)
2	Operations Research principles problems - S Dharani Venkata Krishnan (keerthi publishing house Pvt. Ltd.1994)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/117/104/117104129/
2	https://nptel.ac.in/courses/110/105/110105082/
3	https://nptel.ac.in/courses/110/106/110106045/
Course Designed By: 1. Dr.T.Narppasalai Arasu 2. Dr.P.Rajarajeswari	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	S	S	S	S	S	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	M
CO5	S	M	M	S	S	S	S	S	M	S

*S-Strong; M-Medium; L-Low

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	M	M	M	S	S	S	S	M	S	M
CO3	M	M	M	M	M	S	M	S	S	S
CO4	S	S	M	S	S	S	S	S	S	S
CO5	S	M	M	S	S	S	M	S	M	S

*S-Strong; M-Medium; L-Low

	xt Books
1	Numerical methods -Kandasamy. P, Thilagavathy. K and Gunavathy. K (S. Chand and Company Ltd, New Delhi - Revised Edition 2007.)(Chapters: 3,4,5,6,7 and 8)
2	Introductory Methods of Numerical Analysis-S.S. Sastry (Prentice Hall of India Pvt. Ltd.New Delhi-110001Fourth Edition, 2006)
	ference Books
1	Numerical Methods in Science and Engineering -Venkataraman M. K.(National Publishing company V Edition 1999.)
2	Numerical Methods for Scientists and Engineers -Sankara Rao K .(2nedition Prentice Hall India 2004.)
	lated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	http://www.simumath.com/library/book.html?code=Alg Equations Examples
2	http://jupiter.math.nctu.edu.tw/~smchang/9602/NA_lecture_note.pdf http://www.iosrjournals.org/iosr-jm/papers/Vol6-issue6/J0665862.pdf
3	https://nptel.ac.in/courses/122/102/122102009/ https://nptel.ac.in/courses/111/107/111107105/
Course Designed By: 1. Dr.C.Janaki 2. Dr.P.Rajarajeswari	

COs	PO1	PO2	PO3	P04	PO5	PO6	P07	PO8	PO9	PO10
CO1	M	M	S	S	M	M	S	M	S	S
CO2	S	S	S	M	S	S	M	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	M	S
CO5	S	M	S	S	M	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Course code	ASTRONOMY II	L	T \mathbf{P}	C
Core/Elective/Supportive	ELECTIVE II - A	5	-	3
Pre-requisite	Knowledge in Physics \& Mathematics	Syllabus 2 Version 2 		$\begin{aligned} & 2022- \\ & 2023 \end{aligned}$
Course Objectives:				
To enable the students to learn about the interesting facts of Moon, Sun Planetary Motion.				
Expected Course Outcomes:				
On the successful completion of the course, student will be able to:				
Understand the concepts of precession and nutation.			K1	
Describe the eclipse of the moon.			K2	
Find equation of time.			K3	
Demonstrate the ability to analyze the concepts.			K4	
Describe the properties of stellar system.			K2	
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create				
Unit:1	Time	15 hours		
Equation of time - Conversion of time - Seasons - Calendar.				
Unit:2	Aberration	15 hours		
Annual Parallax - Aberration.				
Unit:3	Precession	15 hours		
Precession - Nutation.				
Unit:4	Eclipses	15 hours		
The Moon - Eclipses.				
Unit:5	The Stellar System	15 hours		
Planetary Phenomenon - The Stellar system.				
Total Lecture hours $\mathbf{7 5}$ hours				
Text Book				
$1 \begin{aligned} & \text { Astronomy-Mr.S.Kumaravelu and Susheela Kumaravelu. (Text publisher: Sivakasi: Janki,7 }\end{aligned}{ }^{\text {th }}$				
Course Designed By: 1. Ms. S.Sobia 2. Mr.M.Balasankar				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	M	M	S	M	M	S	M	M	M	S
CO3	M	M	S	S	S	S	M	S	S	S
CO4	S	M	S	S	S	S	M	S	S	S
CO5	S	M	S	S	M	S	M	S	S	S

*S-Strong; M-Medium; L-Low

1	Numerical methods - Kandasamy. P, Thilagavathy. K and Gunavathy. K (S. Chand and Company Ltd, New Delhi - Revised Edition 2007.)(Chapters: 9,10,11,Appendix and Appendix E)
2	Introductory Methods of Numerical Analysis-S.S. Sastry (Prentice Hall of India Pvt. Ltd.NewDelhi-110001Fourth Edition, 2006)
Reference Books	
1	Numerical Methods in Science and Engineering -Venkataraman M. K.(National Publishing company V Edition 1999.)
2	Numerical Methods for Scientists and Engineers -Sankara Rao K. (Prentice Hall India, $2^{\text {nd }}$ Edition 2004)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	http://nptel.ac.in/courses/104101002/downloads/lecturenotes/module1/chapter6.pdf https://www.britannica.com/science/difference-equation
2	https://nptel.ac.in/courses/122/102/122102009/
3	https://nptel.ac.in/courses/111/107/111107063/
Course Designed By: 1. Dr.C.Janaki 2. Dr.P.Rajarajeswari	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	S	S	S	M	S	S
CO2	M	M	S	S	M	S	M	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	M	M	S	M	S	S	S
CO5	S	M	S	M	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

2	Graph Theory -Frank Harary (Narosa Publishing HQCK 2001).		
3	Introduction to Graph Theory- Dr. M. Murugan.(Muthali Publishing House,2005)		
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]			
1	https://nptel.ac.in/courses/111/106/111106102/		
2	$\underline{\text { https://www.digimat.in/nptel/courses/video/106104170/L19.html }}$		
Course Designed By: 1. Dr.T.Narppasalai Arasu 2. Dr.C.Janaki			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	M	M	M	S	S	S	M	M	M	S
CO3	M	M	M	S	M	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	M	M	S	M	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Course code	AUTOMATA THEORY AND FORMAL LANGUAGES	L T	P	C
Core/Elective/Supportive	ELECTIVE III - B	5	-	4
Pre-requisite	Knowledge in Mathematics	Syllabus Version	$\begin{aligned} & 2022 \\ & 2023 \\ & \hline \end{aligned}$	
Course Objectives:				
To impart knowledge in Finite automata, regular languages, regular grammars, context free grammars, languages, and pushdown automata which play a crucial role to Identify different forma language classes and their relationship.				
Expected Course Outcomes:				
On the successful completion of the course, student will be able to:				
Acquire a fundamental understanding of the core concepts in automata theory and formal languages.			K	1
Design grammars and automata for different language classes.			K2	2
Describe the types of grammar and derivation tree.			K2	2
To apply context-free languages, push-down automata.			K3	3
Design automata, regular expressions and context-free grammars accepting or generating a certain language.			K	
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create				
Unit:1	Phrase Structure Languages.		hour	
Introduction - phrase structure languages.				
Unit:2	Closure Operations		hour	
Closure operations.				
Unit:3	Context Free Languages.		hour	
Context free languages.				
Unit:4	Finite State Automata		hour	
Finite state automata.				
Unit:5	Push Down Automata.		hour	
Push down automata.				
	Total Lecture hours		hour	

Text Book	
1	Formal Languages and Automata- Rani Siromoney. (Revised edition 1984) (Published by the Christian Literary Society, Madras-3) Chapters 1 to 6.
Reference Books	
1	Formal languages and their relation automata-J.E. Hopcroft and D.Ullman (Addison Wesley1969)
2	Automata theory: Machines and Languages-Richard .Y.Kain (McGraw Hill1972)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/106/103/106103070/
2	https://www.digimat.in/nptel/courses/video/111103016/L02.html
	urse Designed By: 1. Dr.T.Nandhagopal 2. Ms.S.Kavunthi

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	S	M	S	S	S	S	M	M	M	S
CO3	M	M	S	S	S	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code	PROGRAMMING IN C++	L	T	P	C
Core/Elective/Supportive	ELECTIVE III - C	$\mathbf{4}$	-		$\mathbf{3}$
Pre-requisite	Knowledge in C Programming	Syllabus Version	2022- $\mathbf{2 0 2 3}$		

Course Objectives:

To enable the students to learn about the class structure, operators, inheritance, polymorphism, file handling.

Expected Course Outcomes:			
On the successful completion of the course, student will be able to:			
1	Know about class structure, member functions \& data members, inheritance types and example problems.	K 1	
2	Understand how C++ improves C with object-oriented features.	K 2	
3	Develop programming skills.	K 2	
4	To make use of objects and classes for developing programs.	K 3	
5	Build C++ classes.	K 4	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Unit:1	Tokens, Expressions and Control Structures	12 hours

Evolution of C++ - applications of C++ - structure of C++ program. Tokens - keywords identifiers and constants - basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants -type compatibility - declaration of variables dynamic initialization of variables - reference variables - operators in C++-scope resolution operator - memory management operators - manipulators - type cast operator - expressions and their types - special assignment expressions - implicit conversions - operator precedence.

\section*{| Unit:2 | Functions in C++ | 12 hours |
| :--- | :--- | :--- |}

The main function - function prototyping - call by reference - return by reference - inline functions - default arguments - const arguments - function overloading. Managing Console, I/O Operations: C++ streams - C++ stream classes - unformatted console I/O operations - formatted console I/O operations -managing output with manipulators.

Unit:3 Classes and Objects

12 hours
Specifying a class - defining member functions - making an outside function inline - nesting of member functions - private member functions - arrays within a class - memory allocation for objects -arrays of objects - objects as function arguments - friend functions - returning objects const member functions. Constructors and Destructors: Introduction - constructors - parameterized constructors - multiple constructors in a class - constructors with default arguments - copy constructor.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	M	S	M	S	S
CO2	M	M	M	M	S	S	S	M	S	S
CO3	S	S	S	S	S	S	M	S	S	S
CO4	S	S	S	M	S	S	S	S	S	S
CO5	S	S	S	M	S	M	S	S	S	M

*S-Strong; M-Medium; L-Low

Peano's Axiom - Mathematical Induction - The Binomial Theorem - Early Number Theory.

Unit:2	Divisibility Theory in Integers	15hours

Divisibility Theory in Integers - The Division Algorithm - The g.c.d. - Euclidean Algorithm - The Diophantine Equation ax + by $=c$

Unit:3 Primes and their Distributions	15 hours	
Primes and their Distributions - The Fundamental Theorem of Arithmetic - The sieve of Eratosthenes - The Gull Conjecture.		
The Theory of Congruence		
Unit:4	15 hours	
The Theory of Congruence - Basic Properties of Congruence - Special Divisibility test - Linear Congruence-Prime modulus- Power residues.		
Fermat's Theorem		
Unit:5	15 hours	

Fermat's Theorem - Fermat's factorization method - The Little theorem - Wilson's theorem.

Text Book	
1	Elementary Number theory -David M. Burton (W.M.C. Brown Publishers, Dubuque, Lawa, 1989.)
Reference Books	
1	An Introduction to theory of Numbers -Ivan Niven and H. Zuckerman ($5^{\text {th }}$ edition, Wiley 1991)
2	Elements of Number Theory - Prof. S.Kumaravelu and Susheela Kumaravelu (Raja Sankar offset Printers, Siva kasi, 2002)
3	Beginning Number Theory -Neville Robinns ($2^{\text {nd }}$ Ed., Narosa Publishing House Pvt. Ltd., Delhi, 2007)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/103/111103020/ https://nptel.ac.in/courses/111/101/111101137/
	urse Designed By: 1.Dr.C.Janaki 2. Dr.M.Anandhi

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	S	S	S	M	S	S	S	M	M	S
CO3	M	M	M	M	M	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	M	S	S	S	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Course code	INTRODUCTION TO INDUSTRY 4.0	L	T	\mathbf{P}	C
Core/Elective/Supportive	ELECTIVE III - E	5	-		4
Pre-requisite	Basic Knowledge of Computer and Internet	Syllab Versio		202	
Course Objectives:					
1. Artificial Intelligence 2. Big Data and Data Analytics 3. Internet of Things					
Expected Course Outcomes:					
On the successful completion of the course, student will be able to:					
$1{ }^{1}$ Know the	adopting Industry 4.0 and Artificial Intelligence.				
2 Understa	for digital transformation.				
3 Apply th	4.0 tools.				
4 Analyze	ions of Big Data				
5 Examine	tions and security of IoT Applications.				
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create					
Need - Reason for Adopting Industry 4.0 - Definition - Goals and Design Principles Technologies of Industry 4.0 - Big Data - Artificial Intelligence (AI) - Industrial Internet of Things - Cyber Security - Cloud - Augmented Reality.					
Unit:2	Artificial Intelligence			hou	
Artificial Intelligence: Artificial Intelligence (AI) - What \& Why? - History of AI - Foundations of AI -The AI -environment - Societal Influences of AI - Application Domains and Tools Associated Technologies of AI - Future Prospects of AI - Challenges of AI.					
Unit:3	Big Data and IoT			hou	
Big Data : Evolution - Data Evolution - Data : Terminologies - Big Data Definitions - Essential of Big Data in Industry 4.0-Big Data Merits and Advantages - Big Data Components : Big Data Characteristics - Big Data Processing Frameworks - Big Data Applications - Big Data Tools - Big Data Domain Stack : Big Data in Data Science - Big Data in IoT - Big Data in Machine Learning - Big Data in Databases - Big Data Use cases Big Data in Social Causes - Big Data for Industry -Big Data Roles and Skills -Big Data Roles - Learning Platforms; Internet of Things (IoT) : Introduction to IoT - Architecture of IoT - Technologies for IoT - Developing IoT Applications Applications of IoT - Security in IoT .					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	M	M	M	S	S	S	S	M	M	S
C03	S	S	S	S	S	S	S	S	S	M
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	M	S	M	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

B. Sc.MATHEMATICS

Syllabus

(2021-2022)

Program Code : 22A

DEPARTMENT OF MATHEMATICS

(Affiliated Colleges)
Bharathiar University
(A State University, Accredited with "A" Grade by NAAC and $13^{\text {th }}$ Rank among Indian Universities by MHRD-NIRF) Coimbatore 641 046, INDIA

Program Educational Objectives (PEOs)

The B. Sc. Mathematics program describe accomplishments that graduates are expected to attain within five to seven years after graduation

PEO1	Acquire knowledge in functional areas of Mathematics and apply in all the fields of learning.
PEO2	Recognise the need for life long learning and demonstrate the ability to explore some mathematical content independently.
PEO3	Employ mathematical ideas encompassing logical reasoning, analytical, numerical ability , theoretical skills to model real-world problems and solve them.
PEO4	Develop critical thinking, creative thinking, self confidence for eventual success in career.
PEO5	Analyze, interpret solutions and to enhance their Entrepreneurial skills, Managerial skill and leadership
PEO6	To prepare the students to communicate mathematical ideas effectively and develop their ability to collaborate both intellectually and creatively in diverse contexts.
PEO7	Rewarding careers in Education, Industry, Banks, MNCs and pursue higher studies

Program Specific Outcomes (PSOs)	
After the successful completion of B. Sc. Mathematics program, the students are expected to	
PSO1	Maintain a core of mathematical and technical knowledge that is adaptable to changing technologies and provides a solid foundation for extended learning.
PSO2	Identify the applications of Mathematics in other disciplines and society.
PSO3	Develop an in-depth knowledge in Mathematics appreciating the connections between theory and its applications .
PSO4	Demonstrate their mathematical modeling ability, problem solving skills, creative talent and power of communication necessary for various kinds of employment.
PSO5	Develop mathematical aptitude and the ability to think abstractly.
PSO6	Learn independently and improve ones performance.
PSO7	Students are equipped to appear competitive examinations.

Program Outcomes (POs)	
On successful completion of the B. Sc. Mathematics program	
PO1	Students are empowered with analytical and logical skills-to formulate results and construct mathematical argument.
PO2	Ability to organize, analyze and interpret data accurately in both academic and non -academic context.
PO3	Demonstrate effective communication of mathematical ideas and creative thinking skills to facilitate solving real world problems as a team and independently.
PO4	Appreciate and identify the connections between Mathematics and other disciplines.
PO5	Competency to obtain employment in education, public and private sectors.. PO6Identify the area of interest for extended learning from the understanding gained from the domain and allied areas of Mathematics.
PO7	Develop mathematical aptitude and make critical observations. PO8Garner innovative ideas to face global challenges. PO9Instill a sense of responsibility in tackling professional and social issues ethically.
PO10	Trigger their passion for research in unexplored areas of Mathematics.

BHARATHIAR UNIVERSITY:COIMBATORE 641046

B. Sc. Mathematics Curriculum (Affiliated Colleges) (CBCS PATTERN)

(For the students admitted from the academic year 2021-2022 and onwards)
Scheme of Examination

Part	Title of the Course		Examination				Credits
				Maximum Marks			
				CIA	CEE	Total	
	Semester I						
I	Language - I	6	3	50	50	100	4
II	English - I	6	3	50	50	100	4
III	Core Paper I - Classical Algebra	4	3	50	50	100	4
III	Core Paper II-Calculus	5	3	50	50	100	4
III	Allied A : Paper I Chosen by the college	7	3	50	50	100	4
IV	Environmental Studies*	2	3	-	50	50	2
	Total	30		250	300	550	22
	Semester II						
I	Language - II	6	3	50	50	100	4
II	English - II	6	3	50	50	100	4
III	Core Paper III - Analytical Geometry	4	3	50	50	100	4
III	Core Paper IV-Trigonometry, Vector Calculus and Fourier Series	5	3	50	50	100	4
III	Allied A: Paper II Chosen by the College	7	3	50	50	100	4
IV	Value Education - Human Rights*	2	3	-	50	50	2
	Total	30		250	300	550	22
	Semester III						
I	Language - III	6	3	50	50	100	4
II	English - III	6	3	50	50	100	4
III	Core Paper V- Differential Equations and Laplace Transforms.	3	3	50	50	100	4
III	Core Paper VI- Statics	3	3	50	50	100	4
III	Allied B : Paper I - Chosen by the college	7	3	30	45	75	3
IV	Skill based Subject - Operations Research -I	3	3	30	45	75	3

IV	Tamil** / Advanced Tamil* (OR) Non-major elective - I (Yoga for Human Excellence)* / Women's Rights*	2	3		50	50	2
	Total	30		260	340	600	24
	Semester IV						
I	Language - IV	5	3	50	50	100	4
II	English - IV	5	3	50	50	100	4
III	Core Paper VII-Dynamics	3	3	30	45	75	3
III	Core Paper VIII- Programming in C Core Paper VIII -Programming in C Practical	2	3	30	45	75	3
III		1	3	10	15	25	1
III	Allied B - Paper II Chosen by the college	5	3	30	45	75	3
III	Allied B - Paper II Chosen by the college (For Practical Paper)	2	3	25	25	50	2
IV	Skill based Subject - Operations Research - Paper II	2	3	25	25	$50^{\text {@@ }}$	2
IV	Office Fundamentals :Digital Skills for Employability http://kb.naanmudhalvan.in/Special: Filepath/Microsoft Course Details.x\| sX	3	-	25	25	$50^{\# \#}$	2
IV	Tamil**/Advanced Tamil* (OR) Non-major elective -II (General Awareness*)	2	3		50	50	2
	Total	30		275	375	650	26
	Semester V						
III	Core Paper IX-Real Analysis-I	5	3	50	50	100	4
III	Core Paper X- Complex Analysis-I	6	3	50	50	100	4
III	Core Paper XI- Modern Algebra-I	6	3	50	50	100	4
III	Core Paper XII- Discrete Mathematics	5	3	50	50	100	4
III	Elective I	5	3	30	45	75	3
IV	Skill based Subject - Operations Research - Paper III	3	3	25	25	$50^{\text {@@ }}$	2
IV	Computational Intelligence for Employability	-	-	25	75	100	2
	Total	30		280	345	625	23
	Semester VI						
III	Core Paper XIII - Real Analysis-II	5	3	50	50	100	4
III	Core Paper XIV - Complex Analysis-II	5	3	50	50	100	4

Unit:5	it:5	Multiple Roots	12 hours
Multiple roots-Rolle's theorem - position of real roots of $f(x)=0$ - Newton's method of approximation to a root - Horner's method.			
			60 hours
Text Book(s)			
1 Algebra-T.K .Manicavachasam Pillai, T.Natarajan\& K.S Ganapathy, (S.Viswanatham Printers \& Publishers Private Ltd-2006)			
Reference Books			
1 年 $\begin{aligned} & \text { Mathematics for B.Sc. Branch I -Vol. I- P. Kandasamy and } \\ & \text { K.Thilagavathy (For B.Sc-I semester) (S. Chand and Company Ltd, }\end{aligned}$ New Delhi, 2004.)			
2 Algebra - N.P.Bali(Publisher: Laxmi Publications-New Delhi Edition 2010) .			
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]			
https://www.brainkart.com/article/Introduction-to-Binomial,-Exponential-and-Logarithmicseries 35107/			
http://www.jiernigan.com/172/ConvergenceDivergenceNotes.pdf			
http://home.iitk.ac.in/~psraj/mth101/lecture notes/Lecture11-13.pdf https://maths4uem.files.wordpress.com/2015/09/1028-infinite-series.pdf https://ocw.mit.edu/high-school/mathematics/exam-prep/concept-of-series/series-convergencedivergence/			
Course Designed By: 1.Dr.C.Janaki 2.Mrs .B.Thenmozhi			

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10
C01	S	M	M	S	S	S	S	M	S	S
C02	S	M	M	M	S	S	S	M	M	S
C03	S	M	S	S	S	S	S	S	S	S
C04	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

1	Calculus Vol 1 - S. Narayanan and T.K.M. Pillai. (Viswanathan Publishers 2008)
2	Calculus Vol 2- S. Narayanan and T.K.M. Pillai.(Viswanathan Publishers 2008)
Reference Books	
1	Mathematics for BSc - Vol I and. II - P. Kandasamy \&K.Thilagarathy(S.Chand and Co-2004)
2	A Text book of calculus- Shanthi Narayanan \&J.N.Kapoor(S.Chand\& Co.2014)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://ocw.mit.edu/resources/res-18-006-calculus-revisited-single-variable-calculus-fall-2010/studymaterials/ https://www.whitman.edu/mathematics/calculus online/chapter15.html
2	https://www.khanacademy.org/math/calculus-home
3	https://www.sac.edu/FacultyStaff/HomePages/MajidKashi/PDF/MATH_150/Bus_Calculus.pdf
4	http://nptel.ac.in/courses/111104085/29
5	http://www.math.odu.edu/~jhh/Volume-1.PDF http://www.math.odu.edu/~jhh/Volume-2.PDF https://www.math.cmu.edu/~wn0g/2ch6a.pdf
6	https://nptel.ac.in/courses/111/105/111105122/http://www.staff.ttu.ee/~Ipallas/multipleintegrals.pdf
	urse Designed By: 1.Dr.C.Janaki 2.Mr.R.Subramanian

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	S	S	S
CO2	S	M	S	S	S	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

1	Solid Geometry- M.L. Khanna(Jainath\& Co Publishers, Meerut)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	http://www.brainkart.com/article/Three-Dimensional-Analytical-Geometry 6453/
2	http://egyankosh.ac.in/bitstream/123456789/11990/1/Unit-2.pdf
	ourse Designed By: 1.Dr.C.Janaki 2.Mrs .B.Thenmozhi

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	M	S	S	S	S	S
CO2	S	M	S	S	S	S	S	M	S	S
C03	S	M	S	M	M	M	S	S	S	S
C04	S	M	S	S	M	S	M	S	S	S
C05	S	S	S	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	S	S	M	M	S	S
CO2	S	M	S	S	M	M	M	S	M	S
C03	S	M	S	S	M	M	M	S	S	S
C04	S	S	S	S	S	S	S	S	S	M
CO5	S	S	S	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	M	S	M	M	S	S
CO2	S	M	S	S	S	S	M	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	S	S	M	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

[^7]

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	S	S	M	M	S	S
CO2	S	M	S	S	M	M	M	M	M	S
CO3	S	M	S	S	M	M	M	S	S	S
CO4	S	S	S	S	S	S	S	M	S	S
CO5	S	S	S	S	M	S	S	S	S	S

[^8]

1	Operations Research - Kantiswarup, P. K. Gupta, Man Mohan(S. Chand \& Sons Education Publications, New Delhi, 12th Revised edition-2003)	
Reference Books		
1	Operations Research - Prem Kumar Gupta D. S. Hira(S. Chand \& Company Ltd, Ram Nagar, New Delhi ,2014)	
2	Operations Research Principles and Problems- S. Dharani Venkata Krishnan(Keerthi publishing house PVT Ltd.1994)	
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]		
1	$\underline{\text { https://nptel.ac.in/courses/111/102/111102012/ }}$	
2	$\underline{\text { https://nptel.ac.in/courses/111/104/111104027/ }}$	
Course Designed By: 1.Dr.C.Janaki		
2.Dr.M.S. Annie Christi		

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	M	M	M	S	S
CO2	S	M	S	S	S	S	S	M	M	S
C03	S	S	S	S	M	M	S	S	S	S
CO4	S	S	S	S	S	S	S	S	M	S
C05	S	S	S	S	S	S	S	M	S	S

*S-Strong; M-Medium; L-Low

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	S	S	S	S	S
CO2	M	M	M	M	M	S	M	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	M	M	M	M	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	M	M	M	S	S
CO2	S	S	M	M	S	M	M	S	M	S
C03	S	M	M	M	S	S	M	S	S	S
C04	S	S	S	S	S	M	S	S	S	M
CO5	S	S	S	S	S	M	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code	PROGRAMMING IN C-(PRACTICAL)	L	T	P	C
Core/Elective/Supportive	Core Paper VIII (Practical)	-	-	1	1
Pre-requisite	Knowledge in C	Sylla Vers		$\begin{aligned} & \hline 2021- \\ & 2022 \\ & \hline \end{aligned}$	
PRACTICAL LIST					
1. Write a C program to generate ' N ' Fibonacci number. 2. Write a C program to print all possible roots for a given quadratic equation. 3. Write a C program to calculate the statistical values of mean, median. 4. Write a C program to calculate the statistical values of Standard Deviation and variance of the given data . 5. Write a C program to sort a set of numbers. 6. Write a C program to sort the given set of names. 7. Write a C program to find factorial value of a given number ' N ' using recursive function call. 8. Write a C program to find the product of two given matrix					

Course code	OPERATIONS RESEARCH - PAPER II	L	T	\mathbf{P}	C
Core/Elective/Supportive	SKILL BASED SUBJECT	2	-		
Pre-requisite	Knowledge In Basic Mathematical Concepts	Sylla Versi		$\begin{aligned} & 2021 \\ & -\quad \\ & 2022 \end{aligned}$	
Course Objectives:					
To impart knowledge in Assignment Problems, Game theory, performance measures of queues and optimal use of Inventory.					
Expected Course Outcomes:					
On the successful completion of the course, student will be able to:					
Identify the importance of stocks, the reasons for holding stockin an organization ,determine the optimal order quantity for models .				K	1
Explain the various costs related to inventory system.				K	2
Apply game theory concepts to articulate real-world situations by identifying, analyzing and practicing strategic decisions .				K	3
Apply and extend queueing models to analyze real world systems.				K	4
Build and solve assignment model.				K	4
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create					
Unit:1	Assignment Model			hou	
The Assignment Problems - Assignment algorithm - optimum solutions - Unbalanced Assignment Problems.					
Unit:2	Game Theory			hou	
Game Theory - Two person zero sum game - The Maximin - Minimax principle - problems - Solution of 2×2 rectangular Games - Domination Property - $(2 \times n)$ and (mx2) graphical method - Problems.					
Queueing Theory - Introduction - Queueing system - Characteristics of Queueing system - Symbols and Notations - Classifications of queues - Problems in (M/M/1) : ($\infty /$ FIFO)					
Unit:4 Multi Channel Queueing Models P/					
Unit:5 Inventory Models -6 hours					
Inventory control - Types of inventories - Inventory costs - EOQ Problem with no shortages - Production problem with no shortages - EOQ with shortages - Production problem with shortages - EOQ with price breaks.					

		Total Lecture hours	30 hours
Text Book			

Education Publications, New Delhi, 12th Revised edition,2003)\end{array}\right\}\)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	S	M	S	M	M	M	S	S
CO2	M	M	M	M	S	S	M	M	M	S
C03	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
C05	S	S	S	M	S	M	S	M	S	M

[^9]

C0s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	S	S	M	M	M	S	S	M	S	S
C03	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Course code	COMPLEX ANALYSIS - I	L	T	P	C
Core/Elective/Supportive	Core Paper - X	6	-	-	4
Pre-requisite	Knowledge in Calculus	Syllabus Version	2021 -2022		
Couse					

Course Objectives:

To equip the students with the understanding of the fundamental concepts of complex functions, analyticity , power series and complex integration.

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	M	S	S	M	M	M	S	S
CO2	S	M	M	M	M	S	M	S	S	S
CO3	S	S	M	S	S	S	S	S	S	S
CO4	S	S	M	S	M	S	S	S	S	S
CO5	S	S	S	S	M	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10
CO1	S	M	M	S	M	S	S	M	S	S
CO2	M	M	S	S	M	S	S	S	S	S
CO3	S	M	M	S	S	S	S	S	S	S
CO4	S	M	M	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code	DISCRETE MATHEMATICS	L	T	P	C
Core/Elective/Supportive	CORE PAPER XII	5			
Pre-requisite	Higher Secondary level Mathematics			202	
Course Objectives:					
Prepare students to develop mathematical foundations to understand, create mathematical arguments and focuses on the Formal languages, Automata, Lattices, Boolean Algebra and Graph Theory.					
Expected Course Outcomes:					
On the successful completion of the course, student will be able to:					
Assimilate various graph theoretic concepts and familiarize with their applications.					1
Know and understand about partially ordered sets, Boolean algebra, lattices and their types.					2
Apply Karnaugh map for simplifying the Boolean expression.					3
Demonstrate the skill to construct simple mathematical proofs and to validate .					4
To achieve greater accuracy, clarity of thought and language.					4
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create					
Unit:1	Mathematical logic			hou	
Connectives, well formed formulas, Tautology, Equivalence of formulas, Tautological implications, Duality law, Normal forms, Predicates, Variables, Quantifiers, Free and bound Variables. Theory of inference for predicate calculus.					
Unit:2	Relations And Functions			hou	
Composition of relations, Composition of functions, Inverse functions, one-to- one, onto, one-toone\& onto functions, Hashing functions, Permutation function, Growth of functions. Algebra structures: Semi groups, Free semi groups, Monoids.					
Unit:3	ormal Languages And Automata			hou	
Regular expressions, Types of grammar, Regular grammar and finite state automata, Context free and sensitive grammars.					
Unit:4 Lattices And Boolean Algebra 15 hours					
Partial ordering, Poset, Lattices, Boolean algebra, Boolean functions, Theorems, Minimization of Boolean functions(Karnaugh Method only).					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	S	S	M	S	M	M	S	S
CO2	S	M	S	S	M	S	S	S	S	S
CO3	S	M	S	S	M	S	M	S	S	S
CO4	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code	OPERATIONS RESEARCH - PAPER III	L	$\mathbf{T} \mathbf{P}$	C
Core/Elective/Supportive	Skill Based Subject	3	- -	2
Pre-requisite	Knowledge In Basics of O.R	Syllab	2021 - 2022	
Course Objectives:				
Presents applications and method to solve Integer Programming Problems, Non-linear Programming Problems and Dynamic Programming problems.				
Expected Course Outcomes:				
On the successful completion of the course, student will be able to:				
Know the concept of simulation and simulate a queueing system			K	
Understand the overall approach of dynamic programming.			K	2
Solve nonlinear programming problems using Lagrange multiplier and using Kuhn-Tucker conditions.			K	2
Apply concepts in optimal scheduling			K	
To formulate a model for solving the intractable problems.			K	4
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create				
Unit:1	Simulation		9 hou	
Introduction-simulation models-Event-Types of simulation- Generation of random numbers-Monte-Carlo simulation- simulation of queueing system.				
Unit:2	Network Scheduling By PERT/CPM		9 hou	
Introduction- Network and basic components- Rules of Network construction- Time calculation in Networks-CPM. Pert Calculations- Cost Analysis- crashing the networkProblems.				
Unit:3	Integer Programming Problem		9 hou	
Integer Programming Problem - Gomory's fractional cut Method - Branch and Bound Method.				
Unit:4 Non-linear Programming Problems 9 hours				
General NLPP - Lagrange multiplier - Hessian bordered Matrix - Kuhn Tucker Condition - Problems.				
Unit:5 Dynamic Programming Problem 9 hours				
Dynamic Programming Problem - Recursive equation approach - D.P.P Algorithm Solution of L.P.P by D.P.P.				

		Total Lecture hours

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	S	S	S	S	S	S
CO2	S	M	M	M	M	S	S	M	S	S
CO3	S	M	M	S	M	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	M	S	S	S	S	S	S

[^10]

Course code	REAL ANALYSIS - II	L	T \mathbf{P}	C
Core/Elective/Supportive	Core Paper - XIII	5		4
Pre-requisite	Knowledge in Mappings \&Properties of Real Numbers	Sylla Versi	$\begin{aligned} & 202 \\ & - \\ & 202 \end{aligned}$	
Course Objectives:				
To present a deeper and rigorous understanding of fundamental concepts like continuity, connectivity, derivative, monotonic functions with properties and Riemann - Stieltjes integral.				
Expected Course Outcomes:				
On the successful completion of the course, student will be able to:				
Demonstrate the understanding of continuity, uniform continuity ,compactness ,connectedness.				1
Understand partitions and their refinement.				2
Determine the Riemann integrability and the Riemann-Stieltjes integrability of a bounded function.				2
Examine the derivatives of function.				3
Acquire skills in writing and analyze the proofs that arise in the context of real analysis.				4
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create				
Unit:1	Topological Mappings		15ho	
Examples of continuous functions -continuity and inverse images of open or closed sets functions continuous on compact sets -Topological mappings -Bolzano's theorem. .				
Unit:2	Monotonic Functions		15 ho	
Connectedness -components of a metric space - Uniform continuity - Uniform continuity and compact sets -fixed point theorem for contractions -monotonic functions.				
Unit:3 Derivatives $^{\text {a }}$ (5 hours				
Definition of derivative - Derivative and continuity -Algebra of derivatives - the chain rule -one sided derivatives and infinite derivatives -functions with non-zero derivatives -zero derivatives and local extrema -Rolle's theorem -The mean value theorem for derivatives - Taylor's formula with remainder.				
Unit:4 Functions Of Bounded Variation 15 hours				
Properties of monotonic functions -functions of bounded variation -total Variation -additive properties of total variation on (a, x) as a function of x - functions of bounded variation expressed as the difference of increasing functions -continuous functions of bounded variation.				

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	S	S	S	M	S	S
CO2	M	M	M	M	M	S	S	M	S	S
CO3	S	M	M	S	S	S	M	S	S	S
CO4	S	M	M	S	S	S	M	S	S	S
CO5	M	M	S	M	M	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	M	S	S	M	S	S
CO2	S	S	M	S	M	S	M	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	S	M	S	S	S	S	S
CO5	S	M	M	S	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

Course code	MODERN ALGEBRA - II	L \quad T	P	
Core/Elective/Supportive	Core Paper - XV	5		
Pre-requisite	Knowledge in Groups, Rings and Fields	Syllabus Version	202	
Course Objectives:				
To develop understanding in the domain of matrix theory ,vector spaces, linear transformations as well as the principles underlying the subject.				
Expected Course Outcomes:				
On the successful completion of the course, student will be able to:				
Communicate and understand mathematical ideas and results with the correct use of mathematical definitions, terminology and symbols.				
Explain the concepts of base and dimension of Vector space.				
To apply the Gram-Schmidt process to construct an orthonormal set of vectors in an inner product space.				
Demonstrate competence with the basic ideas of Matrix theory,Vector spaces, Dual spaces, Linear transformation.				
Have an insight to analyze a real life problem and solve it.				
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create				
Introduction - Addition and Scalar Multiplication of Matrices - Product of Matrices -Transpose of a Matrix - Matrix Inverse - Symmetric and Skew - Symmetric Matrices.				
Unit:2	Special Matrices		hou	
Hermitian and Skew-Hermitian Matrices - Orthogonal and Unitary Matrices - Rank of a Matrix Characteristic Roots and Characteristic Vectors of a Square Matrix.				
Unit:3	Vector Spaces		hou	
Elementary Basic Concepts - Subspace of a Vector space - Homomorphism - Isomorphism Internal and External direct sums - Linear span - Linear Independence and Bases.				
Unit:4	Dual Spaces		hou	
Dual Spaces - Annihilator of a subspace - Inner Product Spaces - Norm of a Vector - Orthogonal Vectors - Orthogonal Complement of a subspace - Orthonormal set.				
Unit:5	Linear Transformations		hou	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	S	S	M	S	S
CO2	M	M	S	S	M	S	M	M	S	S
CO3	S	M	S	S	M	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

Course code	OPERATIONS RESEARCH - PAPER -IV	L	T	\mathbf{P}	C
Core/Elective/Supportive	Skill Based Subject	2			2
Pre-requisite	Knowledge in Basics of O.R	Sylla Versi		202	
Course Objectives:					
To enhance the students knowledge in decision analysis, sequencing of the jobs to be carried out based on cost optimization, replacement policies and analyze the cases according to their categories.					
Expected Course Outcomes:					
On the successful completion of the course, student will be able to:					
Know the principles and applications of information theory.				K	1
To understand sequencing, replacement problems.				K	2
Demonstrate skills to achieve their objective using sequencing models				K	3
Apply decision making under different business environments .				K	4
Determine a solution to a rectangular game using simplex method.				K	3
K1 - Remember; K2 - Understand; K3 - Apply; K4-Analyze; K5 - Evaluate; K6 - Create					
Decision Making environment - Decisions under uncertainty - Decision under risk - Decision Tree Analysis.					
Unit:2	Sequencing Problems			hou	
Introduction-problem of sequencing - basic terms used in sequencing- processing n-jobs through 2 machines - processing n -jobs through k machines - processing 2 jobs through k machines(Problems only).					
Unit:3 Replacement Problems 6 hours Introduction - Replacement of equipment / assets that deteriorates gradually - replacement of equipment that fails suddenly and problems.					
Unit:4 Information Theory 6 hours Introduction- A measure of Information-Axiomatic Approach to Information- Entropy-The expected information- Some properties of entropy function-Joint and conditional entropies					
General solution of (mxn) rectangular games using simplex method - Reliability and system failure rates using replacement problems.					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	S	S	S	S	S	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	M
CO5	S	M	M	S	S	S	S	S	M	S

*S-Strong; M-Medium; L-Low

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	M	M	M	S	S	S	S	M	S	M
CO3	M	M	M	M	M	S	M	S	S	S
CO4	S	S	M	S	S	S	S	S	S	S
CO5	S	M	M	S	S	S	M	S	M	S

*S-Strong; M-Medium; L-Low

1	Numerical methods -Kandasamy. P, Thilagavathi. K and Gunavathi. K (S. Chand and Company Ltd, New Delhi - Revised Edition 2007.)(Chapters: 3,4,5,6,7 and 8)
2	Introductory Methods of Numerical Analysis-S.S. Sastry(Prentice Hall of India Pvt. Ltd.New Delhi-110001Fourth Edition, 2006)
Reference Books	
1	Numerical Methods in Science and Engineering -Venkataraman M. K.(National Publishing company V Edition 1999.)
2	Numerical Methods for Scientists and Engineers -Sankara Rao K.(2nedition Prentice Hall India 2004.)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	http://www.simumath.com/library/book.html?code=Alg Equations Examples
2	http://jupiter.math.nctu.edu.tw/~smchang/9602/NA lecture note.pdf http://www.iosrjournals.org/iosr-jm/papers/Vol6-issue6/J0665862.pdf
3	https://nptel.ac.in/courses/122/102/122102009/ https://nptel.ac.in/courses/111/107/111107105/
	ourse Designed By: 1.Dr.C.Janaki 2.Mr.R.Subramanian

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	M	M	S	M	S	S
CO2	S	S	S	M	S	S	M	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	M	S
CO5	S	M	S	S	M	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Course code	ASTRONOMY II	L	T \mathbf{P}	C
Core/Elective/Supportive	ELECTIVE II - A	5	-	3
Pre-requisite	Knowledge In Physics\& Mathematics	Syllabus Version		
Course Objectives:				
To enable the students to learn about the interesting facts of Moon, Sun Planetary Motion .				
Expected Course Outcomes:				
On the successful completion of the course, student will be able to:				
Understand the concepts of precession and nutation.				1
Describe the eclipse of the moon.				2
Find equation of time .				3
Demonstrate the ability to analyze the concepts.				4
Describe the properties of stellar system.				2
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create				
Unit:1	Time		15 ho	
Equation of time - Convertion of time - Seasons - Calendar.				
Unit:2				
	Abberation		15 ho	
Annual Parallax - Abberation.				
Unit:3 Precession ${ }_{\text {S }}$ (15 hours				
Precession - Nutation.				
Unit:4	Eclipses		15 ho	
The Moon - Eclipses.				
Unit:5	The Stellar System		15 ho	
Planetary Phenomenon - The Stellar system.				
Total Lecture hours 75 hours				
Text Book(s)				
1 $\begin{array}{l}\text { Astronomy-Mr.S.Kumaravelu and SusheelaKumaravelu.(Textpublisher: Sivakasi: } \\ \text { Janki, } 7^{\text {th }} \text { edition,1986) }\end{array}$				
Course Designed By: 1.Dr.C.Janaki2A.Pushpalatha				

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	M	M	S	M	M	S	M	M	M	S
C03	M	M	S	S	S	S	M	S	S	S
CO4	S	M	S	S	S	S	M	S	S	S
CO5	S	M	S	S	M	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Text Book 1Numerical methods -Kandasamy. P, Thilagavathi. K and Gunavathi. K (S. Chand and Company Ltd, New Delhi - Revised Edition 2007.)(Chapters: 9,10,11,Appendix and Appendix E)	
2	Introductory Methods of Numerical Analysis-S.S. Sastry(Prentice Hall of India Pvt. Ltd.NewDelhi-110001Fourth Edition, 2006)
Reference Books	
1	Numerical Methods in Science and Engineering -Venkataraman M. K.(National Publishing company V Edition 1999.)
2	Numerical Methods for Scientists and Engineers -Sankara Rao K. (Prentice Hall India, $2^{\text {nd }}$ Edition2004)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	http://nptel.ac.in/courses/104101002/downloads/lecturenotes/module1/chapter6.pdf https://www.britannica.com/science/difference-equation
2	https://nptel.ac.in/courses/122/102/122102009/
3	https://nptel.ac.in/courses/111/107/111107063/
Course Designed By: 1.Dr.C.Janaki 2.Mr.R.Subramanian	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	S	S	S	S	S	M	S	S
CO2	M	M	S	S	M	S	M	M	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	M	S	M	M	S	M	S	S	S
CO5	S	M	S	M	M	S	S	S	S	S

*S-Strong; M-Medium; L-Low

2	Graph Theory -Frank Harary (Narosa Publishing HQCK 2001).
3	Introduction to Graph Theory- Dr. M. Murugan.(Muthali Publishing House,2005)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/106/111106102/
2	https://www.digimat.in/nptel/courses/video/106104170/L19.html
	se Designed By: 1.Dr.C.Janaki 2.Mr.R.Subramanian

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	S	S	S	S	M	S	S
CO2	M	M	M	S	S	S	M	M	M	S
C03	M	M	M	S	M	S	M	S	S	S
C04	S	S	S	S	S	S	S	S	S	S
CO5	S	M	M	S	M	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Reference Books	
1	Formal languages and their relation automata-J.E. Hopcroft and D.Ullman(Addision Wesley1969)
2	Automata theory:Machines and Languages-Richard .Y.Kain(McGraw Hill1972)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/106/103/106103070/
2	https://www.digimat.in/nptel/courses/video/111103016/L02.html
	urse Designed By: 1.Dr.C.Janaki 2.Dr.A.Pushpalatha

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	S	M	S	S	S	S	M	M	M	S
CO3	M	M	S	S	S	S	M	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

[^11]

[^12]| Course code | PROGRAMMING IN C++ (PRACTICAL) | L | T | P | C |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Core/Elective/Supportive | ELECTIVE III - C(Practical) | - | - | $\mathbf{1}$ | $\mathbf{1}$ |
| Pre-requisite | Knowledge in C++ | Syllabus
 Version | $\mathbf{2 0 2 1 -}$ | | |
| PRACTICAL LIST | | | | | |
| 1. Write a function 'power()'to raise a number 'm' to a power ' n '. The function takes a 'double'
 value for ' m 'and 'int' value for ' n ', and returns the result correctly. Use a default vale of 2 for ' n '
 to make the function to calculate squares when this argument is omitted. Write a main() that gets
 the values of 'm' and 'n' from the user to test the function. | | | | | |
| 2. Write a program to compute compound interest of a given amount AMT for ' n ' years. Use
 function overloading so that the program gets input of interest rate RATE in any of the data type
 'float' or 'int' | | | | | |
| 3. Create a class which consist of employee detail ENO, ENAME, DEPT, BASIC SALARY.
 Write a member function to get and display them. Derive a class PAY from the above class and
 write a member function to calculate DA, HRA and PF depending on the grade and display the
 pay slip in a neat format using console I/O | | | | | |
| 4. Define two classes POLAR and RECTANGLE to represent points in the polar and rectangle
 system. Write a program to convert from one system to another. | | | | | |
| 5. Create a class FLOAT that contains one float data member. Overload all the four arithmetic
 operators so that they operate on the objects of FLOAT. | | | | | |

Reference Books	
1	An Introduction to theory of Numbers -Ivan Nivan and H. Zuckerman (5 ${ }^{\text {th }}$ edition, Wiley 1991)
2	Elements of Number Theory - Prof. S.Kumaravelu and SusheelaKumaravelu(Raja Sankar offset Printers ,Sivakasi, 2002)
3	Beginning Number Theory -Neville Robinns($2^{\text {nd }}$ Ed., Narosa Publishing House Pvt.Ltd.,Delhi, 2007)
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/103/111103020/ https://nptel.ac.in/courses/111/101/111101137/
Course Designed By: 1.Dr.C.Janaki 2.Mr.R.Subramanian	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10
CO1	M	M	M	M	M	M	M	M	S	S
CO2	S	S	S	M	S	S	S	M	M	S
C03	M	M	M	M	M	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	M	S	S	S	S	M	S	S	S

*S-Strong; M-Medium; L-Low

Data Domain Stack : Big Data in Data Science - Big Data in IoT - Big Data in Machine Learning - Big Data in Databases - Big Data Use cases Big Data in Social Causes - Big Data for Industry Big Data Roles and Skills -Big Data Roles - Learning Platforms; Internet of Things (IoT) : Introduction to IoT - Architecture of IoT - Technologies for IoT - Developing IoT Applications Applications of IoT - Security in IoT .

Unit:4	Applications And Tools Of Industry 4.0	15 hour
Applications of IoT - Manufacturing - Healthcare - Education - Aerospace and Defense Agriculture - Transportation and Logistics - Impact of Industry 4.0 on Society: Impact on Business, Government, People. Tools for Artificial Intelligence, Big Data and Data Analytics, Virtual Reality, Augmented Reality, IoT, Robotics.		
Unit:5	Jobs 2030	15 hour
Industry 4.0 - Education 4.0 - Curriculum 4.0 - Faculty 4.0 - Skills required for Future - Tools for Education - Artificial Intelligence Jobs in 2030 - Jobs 2030 - Framework for aligning Education with Industry 4.0 .		
	Total Lecture hours	75 hour
Text Book		
1 Higher Education for Industry 4.0 and Transformation to Education 5.0(2021)-P.Kaliraj \& T.		
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]		
1 https://nptel.ac.in/courses/106/105/106105195/		
Course Designed By:1.Dr.C.Janaki 2.Mr.R.Subramanian		

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P010
C01	M	M	M	S	S	S	S	M	S	S
C02	M	M	M	S	S	S	S	M	M	S
C03	S	S	S	S	S	S	S	S	S	M
C04	S	S	S	S	S	S	S	S	S	S
C05	S	M	S	M	S	S	S	S	S	S

*S-Strong; M-Medium; L-Low

[^0]: *S-Strong; M-Medium; L-Low

[^1]: *S-Strong; M-Medium; L-Low

[^2]: *S-Strong; M-Medium; L-Low

[^3]: *S-Strong; M-Medium; L-Low

[^4]: *S-Strong; M-Medium; L-Low

[^5]: *S-Strong; M-Medium; L-Low

[^6]: *S-Strong; M-Medium; L-Low

[^7]: *S-Strong; M-Medium; L-Low

[^8]: *S-Strong; M-Medium; L-Low

[^9]: *S-Strong; M-Medium; L-Low

[^10]: *S-Strong; M-Medium; L-Low

[^11]: *S-Strong; M-Medium; L-Low

[^12]: *S-Strong; M-Medium; L-Low

