

BHARATHIAR UNIVERSITY, COIMBATORE. M. Sc. MATHEMATICS DEGREE COURSE (AFFILIATED COLLEGES) (For the candidates admitted from the academic year 2023-24 onwards)

				Examinations		tions		
Semester.	Study Components	Course title	Ins. hrs/week	Dur.Hrs.	CIA	Marks	Total Marks	Credit
Ι	Paper 1	Abstract Algebra*	6	3	25	75	100	4
	Paper 2	Real Analysis	7	3	25	75	100	4
	Paper 3	Ordinary Differential Equations*	7	3	25	75	100	4
	Paper 4	Numerical Methods	6	3	25	75	100	4
	Elect. Paper I		4	3	25	75	100	4
II	Paper 5	Linear Algebra*	6	3	25	75	100	4
	Paper 6	Complex Analysis	7	3	25	75	100	4
	Paper 7	Partial differential equations*	7	3	25	75	100	4
	Paper 8	Mechanics	6	3	25	75	100	4
	Elect. Paper II		4	3	25	75	100	4
III	Paper 9	Topology	7	3	25	75	100	4
	Paper 10	Fluid Dynamics	7	3	25	75	100	4
	Paper 11	Mathematical Statistics*	6	3	25	75	100	4
	Paper 12	Graph Theory	6	3	25	75	100	4
	Elective Paper III	副	4	3	25	75	100	4
V	Paper 13	Functional Analysis	7	3	25	75	100	4
	Paper 14	Mathematical Methods	7	3	25	75	100	4
	Paper 15	Optimization Techniques*	6	3	25	75	100	4
	Paper 16	Computer Programming (C++ Theory)	4	3	25	75	100	4
	Practical	Computer Programming (C++ Practical)	2	3	40	60	100	4
	Elect. Paper IV		4	3	25	75	100	4
	Project						150@	6
		Total					2250	90

SCHEME OF EXAMINATIONS - CBCS PATTERN

@ For Project report - 120 marks, Viva-voce - 30 marks.

The number of students for conducting Project Viva-voce is 10 per session. If the number of the remaining students exceeds 5 then the Viva-voce for them can be conducted in the next session.

LIST OF ELECTIVES								
1. Number Theory*		6. Control The	eory					
2. Differential Geometry		7. Cryptography						
3. Neural Networks	8. MATLAB							
4. Magnetohydrodynamics		9. LaTex						
5. Fuzzy Logic and Fuzzy Sets*		10. Elements of	of Stochas	stic P	rocess	*		
* New Course Added / Course Syllabus Modified								
	Theory				20	55	100	
Matlab, LaTex	Practical				10	15	100	

Note. Syllabi for all the papers for the students joining in the academic year 2023-24 are given below

Paper 1: ABSTRACT ALGEBRA

UNIT I:

Another Counting Principle, Sylow''s Theorem: 1st, 2nd and 3rd parts of Sylow''s Theorems – double coset – the normalizer of a group.

UNIT II:

Direct Products: External and Internal direct Products, Euclidean Rings, A Particular Euclidean Rings, Polynomial rings.

UNIT III:

Polynomials over rational fields – extension fields – roots of polynomials – splitting fields.

UNIT IV:

More about roots – simple extension – fixed fields – symmetric rational functions – normal extension - Galois group – fundamental theorem of Galois theory.

UNIT V:

Solvability by radicals: Solvable group – the commutator subgroup – Solvability by radicals - Finite fields.

2

TEXT BOOK:

1. I.N. Herstein, Topics in Algebra, 2nd Edition, John Wiley and Sons, New York, 1975.

UNIT I:	Chapter 2	: Sections 2.11, 2.1
UNIT II:	Chapter 2	: Sections 2.13
	Chapter 3	: Section 3.7 - 3.9
UNIT III:	Chapter 3	: Section 3.10
	Chapter 5	: Sections 5.1,5.3
UNIT IV:	Chapter 5	: Sections 5.5,5.6
UNIT V:	Chapter 5	: Section 5.7
	Chapter 7	: Section 7.1

REFERENCE BOOKS:

1. S. Lang, "Algebra", 3rd Edition, Addison-Wesley, Mass, 1993.

2. John B. Fraleigh, "A First Course in Abstract Algebra", Addison Wesley, Mass, 1982.

3. M. Artin, "Algebra", Prentice-Hall of India, New Delhi, 1991.

PAPER 2: REAL ANALYSIS

UNIT I:

RIEMANN STILTJES INTEGRAL: Definition and Existence of the Integral – properties of the integral – Integration and differentiation – Integration of vector valued function – rectifiable curves.

UNIT II:

SEQUENCES AND SERIES OF FUNCTIONS: Uniform convergence and continuity – uniform convergence and integration - uniform convergence and differentiation – equicontinuous families of functions – The Stone Weierstrass theorem.

UNIT III:

FUNCTIONS OF SEVERAL VARIABLES: Linear transformation – contraction principle – Inverse function theorem – Implicit function theorem.

UNIT IV:

LEBESGUE MEASURE: Outer measure – Measurable sets and Lebesgue measure – Measurable functions –Littlewood"s Theorem

UNIT V:

LEBESGUE INTEGRAL: The Lebesgue integral of bounded functions over a set of finite measure – integral of a non – negative function – General Lebesgue Integral.

Text Book:

1. Principles of Mathematical Analysis by W. Rudin, McGraw Hill, New York, 1976. Unit I &II : Chapter 6 & 7.

Unit III : Chapter 9 (Pages 204 to 227)

2. Real Analysis by H.L. Roydon, Third Edition, Macmillan, New York, 1988.

Unit IV : Chapter 3 (except Section – 4) Unit V :Chapter 4 (Sections 2, 3 & 4 only)

Reference Books:

1.R.G.Bartle, Elements of Real Analysis, 2nd Edition, John Wily and Sons, New York, 1976. 2.W.Rudin, Real and Complex Analysis, 3rd Edition, McGraw-Hill, New York, 1986.

Paper 3: ORDINARY DIFFERENTIAL EQUATIONS

UNIT I: LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Introduction - Second order homogenous equations - Initial value problem for second order equations - Linear dependence and independence - A formula for Wronskian

UNIT II: LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS (Cont'd.):

The Non- homogenous equations of order two-homogenous and Non - homogenous equations of order n - Initial value problems for n^{th} order equations- Annihilator method to solve non-Homogenous equation.

UNIT III: LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

Initial value problem - Existence and uniqueness theorem - The Wronskian and linear independence - Reduction of the order of a homogenous equation - The non- Homogenous equation - Homogenous equations with analytic coefficients - The Legendre equations

UNIT IV: LINEAR EQUATIONS WITH REGULAR SINGULAR POINTS

The Euler equations - Second order equations with regular singular points - Exceptional cases - The Bessel equation – The Bessel equation contd.

UNIT V: EXISTENCE AND UNIQUENESS OF SOLUTIONS TO FIRST ORDER EQUATIONS: Equations with variable separated - Exact equations - The method of successive approximation - The Lipschitz Condition - Convergence of the successive approximation - Non-local existence of solutions - Approximations and uniqueness of solutions.

TEXT BOOK:

Earl A. Coddington, An Introduction to Ordinary Differential Equations – Prentice – Hall of India Private Limited, New Delhi 2008.

UNIT I:	Chapter 2	: Sections $2.1 - 2.5$.
UNIT II:	Chapter 2	: Sections $2.6 - 2.8$, $2.10, 2.11$.
UNIT III:	Chapter 3	: Sections $3.1 - 3.8$
UNIT IV:	Chapter 4	: Sections $4.1 - 4.4, 4.6 - 4.8$
UNIT V:	Chapter 5	: Sections $5.1 - 5.8$

REFERENCE BOOKS:

- 1. Williams E. Boyce and Richard C. Diprima Elementary Differential Equations and Boundary Value Problems, 10th edition John Wiley and Sons, New York 2012.
- 2. S.G.Deo and V.Raghavendra., Ordinary Differential Equations and Stability Theory, Tata McGraw-Hill, New Delhi 1980.
- 3. George F. Simmons, Differential Equations with Application and Historical Notes, Tata McGraw Hill, New Delhi 1974

Paper 4: NUMERICAL METHODS

UNIT I:

SOLUTION OF NONLINEAR EQUATIONS: Newton's method – Convergence of Newton's method – Bairstow's Method for quadratic factors.

NUMERICAL DIFFERENTIATION AND INTEGRATION: Derivatives from Differences tables – Higher order derivatives – Divided difference, Central-Difference formulas– Composite formula of Trapezoidal rule – Romberg integration – Simpson''s rules.

UNIT II:

SOLUTION OF SYSTEM OF EQUATIONS: The Elimination method – Gauss and Gauss Jordan methods – LU Decomposition method – Matrix inversion by Gauss- Jordan method – Methods of Iteration – Jacobi and Gauss Seidal Iteration – Relaxation method – Systems of Nonlinear equations.

UNIT III:

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: Taylor series method – Euler and Modified Euler methods – Runge-kutta methods – Multistep methods – Milne"s method – Adams Moulton method.

UNIT IV:

BOUNDARY VALUE PROBLEMS AND CHARACTERISTIC VALUE PROBLEMS: The shooting method – solution through a set of equations – Derivative boundary conditions – Characteristic value problems – Eigen values of a matrix by Iteration – The power method.

UNIT V:

NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS: (Solutions of Elliptic, Parabolic and Hyperbolic partial differential equations) Representation as a difference equation – Laplace''s equation on a rectangular region – Iterative methods for Laplace equation – The Poisson equation – Derivative boundary conditions – Solving the equation for time-dependent heat flow (i) The Explicit method (ii) The Crank Nicolson method – solving the wave equation by Finite Differences.

Text Book:

APPLIED NUMERICAL ANALYSIS by C.F.Gerald and P.O.Wheatley, Fifth Edition, Addison Wesley, (1998).

Reference Books:

- 1. S.C. Chapra and P.C. Raymond: Numerical Methods for Engineers, Tata McGraw Hill, New Delhi, (2000)
- 2 .S.S. Sastry: Introductory methods of Numerical Analysis, Prentice Hall of India, New Delhi, (1998).
- 3 .P.Kandasamy et al., Numerical Methods, S.Chand & Co.Ltd., New Delhi(2003)

Paper 5: LINEAR ALGEBRA

UNIT I: Linear transformations

Linear transformations – Isomorphism of vector spaces – Representations of linear transformations by matrices – Linear functionals.

UNIT II: Algebra of polynomials

The algebra of polynomials –Polynomial ideals - The prime factorization of a polynomial - Determinant functions.

UNIT III: Determinants

Permutations and the uniqueness of determinants – Classical adjoint of a (square) matrix – Inverse of an invertible matrix using determinants – Characteristic values – Annihilating polynomials.

UNIT IV: Diagonalization

Invariant subspaces – Simultaneous triangulations – Simultaneous diagonalization – Directsum decompositions – Invariant direct sums – Primary decomposition theorem.

UNIT V: The Rational and Jordan forms

Cyclic subspaces – Cyclic decompositions theorem (Statement only) – Generalized Cayley – Hamilton theorem - Rational forms – Jordan forms.

TEXT BOOK:

Kenneth M Hoffman and Ray Kunze, Linear Algebra, 2nd Edition, Prentice-Hall of India Pvt. Ltd, New Delhi, 2013.

UNIT I:	Chapter 3	Sections 3.1-3.5
UNIT II:	Chapter 4	: Sections 4.1, 4.2, 4.4, 4.5
	Chapter 5	: Sections 5.1, 5.2
UNIT III:	Chapter 5	: Sections 5.3, 5.4
	Chapter 6	: Sections 6.1-6.3
UNIT IV:	Chapter 6	: Sections 6.4 - 6.8
UNIT V:	Chapter 7	: Sections 7.1 – 7.3

REFERENCE BOOKS:

- 1. M. Artin, "Algebra", Prentice Hall of India Pvt. Ltd., 2005.
- 2. S.H. Friedberg, A.J. Insel and L.E Spence, *"Linear Algebra"*, 4th Edition, Pritice-Hall of India Pvt. Ltd., 2009.
- 3. I.N. Herstein, *"Topics in Algebra"*, 2nd Edition, Wiley Eastern Ltd, New Delhi, 2013.

Paper 6: COMPLEX ANALYSIS

UNIT I:

Introduction to the concept of analytic function: Limits and continuity – Analytic functions – Polynomials – Rational functions

Conformality: Arcs and closed curves – Analytic functions in regions – Conformal Mapping – Length and Area.

Linear Transformations: The Linear group – The Cross ratio – Elementary Riemann Surfaces.

UNIT II:

Complex Integration: Line Integrals Rectifiable Arcs – Line Integrals as Functions of Arcs – Cauchy's theorem for a rectangle - Cauchy's theorem in a disk.

Cauchy's Integral formula: The Index of a point with respect to a closed curve – The Integral formula – Higher derivatives Removable singularities, Taylor's Theorem – Zeros and Poles – The Local Mapping– The Maximum principle – chains and cycles.

UNIT III:

The Calculus of Residues: The Residue theorem – The Argument principle – Evaluation of definite integrals.

Harmonic functions: The Definitions and basic Properties – Mean value property – Poisson's Formula.

UNIT IV:

Series and Product Developments: Weierstrass Theorem – The Taylor Series – The Laurent Series.

Partial fractions and Factorization: Partial Fractions – Infinite Products – Canonical Products.

UNIT V:

Elliptic functions

Simply Periodic Functions : Representation by Exponentials-The Fourier Development - Functions of Finite Order.

Doubly Periodic Functions: The Period Module-Unimodular Transformations - The Caninical Basis-General Properties of Elliptic Functions.

Weierstrass Theory: The Weierstrass ℘-function

Text Book:

Complex Analysis by L.V. Ahlfors, McGraw Hill, New York, 1979.

Unit I:	Chapter – 2	Sections 1.1 – 1.4
	Chapter – 3	Sections 2.1 – 2.4, 3.1, 3.2 and 3.4
Unit II:	Chapter – 4	Sections 1.1 – 1.5, 2.1 – 2.3, 3.1 - 3.4 and 4.1
Unit III:	Chapter – 4	Sections 5.1 – 5.3, 6.1 – 6.3
Unit IV:	Chapter – 5	Sections 1.1 – 1.3, 2.1 – 2.3
Unit V:	Chapter – 7	Sections 1.1 – 3.3

Paper 7: PARTIAL DIFFERENTIAL EQUATIONS

UNIT I: PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER:

Partial Differential Equations – Origins of First Order Differential Equations – Cauchy's Problem for first order equations – Linear Equations of the first order – Nonlinear partial differential equations of the first order – Cauchy's method of characteristics – Compatible system of First order Equations – Solutions satisfying Given Condition, Jacobi's method

UNIT II: PARTIAL DIFFERENTIAL EQUATIONS OF THE 2nd ORDER:

The Origin of Second Order Equations – Linear partial Differential Equations with constant coefficients – Equations with variable coefficients – Separation of variables – The method of Integral Transforms – Non – linear equations of the second order.

UNIT III: LAPLACE'S EQUATION:

Elementary solutions of Laplace equation – Families of Equipotential Surfaces – Boundary value problems – Separation of variables – Surface Boundary Value Problems – Separation of Variables – Problems with Axial Symmetry – The Theory of Green''s Function for Laplace Equation.

UNIT IV: THE WAVE EQUATION:

The Occurrence of the wave equation in Physics – Elementary Solutions of the One – dimensional Wave equations – Vibrating membrane, Application of the calculus of variations – Three dimensional problem – General solutions of the Wave equation.

UNIT V: THE DIFFUSION EQUATION:

Elementary Solutions of the Diffusion Equation – Separation of variables – The use of Integral Transforms – The use of Green"s functions

TEXT BOOK:

Ian Sneddon – Elements of Partial Differential Equations – McGraw Hill International Book Company, New Delhi, 1983

REFERENCE BOOKS:

- 1. M.D. Raisinghania Advanced Differential Equations S. Chand and Company Ltd., New Delhi, 2001
- 2. K. Sankara Rao, Introduction to Partial Differential Equations, Second edition Prentice – Hall of India, New Delhi 2006
- 3. J.N. Sharma & K. Singh Partial Differential Equations for Engineers & Scientists, Narosa Publishing House, 2001

Paper 8: MECHANICS

UNIT-I:

INDRODUCTORY CONCEPTS: Mechanical system – Generalized Coordinates – Constraints – Virtual Work – Energy and Momentum.

UNIT-II:

LAGRANGE'S EQUATIONS: Derivations of Lagrange"s Equations: Derivations of Lagrange"s Equations – Examples – Integrals of Motion.

UNIT-III:

HAMITON'S EQUATIONS: Hamilton"s Principle – Hamilton"s Equations.

UNIT-IV:

HAMILTON – JACOBI THEORY: Hamilton"s Principle function – Hamilton – Jacobi Equation – Separability.

UNIT-V:

CANONICAL TRANSFORMATIONS: Differential forms and Generating Functions – Lagrange and Poisson Brackets.

Text Book:

D.T.Greenwood, Classical Dynamics, Dover Publication, New York, 1997.

	E	
Unit-I:	Chapter 1:	Sections 1.1 – 1.5
Unit-II:	Chapter 2:	Sections 2.1 – 2.3
Unit-III:	Chapter 4:	Sections $4.1 - 4.2$
Unit-IV:	Chapter 5:	Sections $5.1 - 5.3$
Unit-V:	Chapter 6:	Sections 6.1, 6.3

Reference Books:

1.F. Gantmacher, Lectures in Analytic Mechanics, MIR Publishers, Moscow, 1975.

2.I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall.

3.S.L. Loney, An Elementary Treatise on Statics, Kalyani Publishers, New Delhi, 1979.

Paper 9: TOPOLOGY

UNIT I:

Types of Topological Spaces and Examples - Basics for a topology - The order topology - The product topology on $X \times Y$ - The subspace topology - Closed sets and limits points - Continuous functions.

UNIT II:

The Product Topology - The metric topology - Sequence lemma- Uniform limit theorem-Connected spaces - Connected subspaces of the real line - Components and Local connectedness.

UNIT III:

Compact spaces - Compact subspaces of the real line -Uniform continuity theorem - Limit Point Compactness – complete metric spaces –compactness in metric spaces.

UNIT IV:

First and Second countable spaces - Lindeloff and Separable spaces - Countability axioms - The separation axioms - Normal spaces - The Uryshon''s lemma.

Unit V:

The Urysohn Metrization Theorem - Tietze Extension Theorem - The Tychonoff theorem - Stone Cech compactifications.

TEXT BOOK:

James R.Munkres, Topology (Second Edition), Prentice – Hall of India, Private Ltd, New Delhi (2006).

REFERENCE BOOKS:

- 1. G.F.Simmons, Introduction to Topology and Modern Analysis, Tata McGraw-Hill Edition, New Delhi (2004).
- 2. Fred H.Croom, Principles of Topology, Cengage India Pvt Ltd, New Delhi (2009)
- 3. Seymour Lipschutz, Theory and Problems of General Topology, McGraw-Hill Edition, New Delhi (2006).

PAPER 10: FLUID DYNAMICS

UNIT I:

Introductory Notions – Velocity – Stream Lines and Path Lines – Stream Tubes and Filaments – Fluid Body – Density – Pressure. Differentiation following the Fluid – Equation of continuity – Boundary conditions – Kinematical and physical – Rate of change of linear momentum – Equation of motion of an inviscid fluid.

UNIT II:

Euler"s momentum Theorem – Conservative forces – Bernoulli"s theorem in steady motion – energy equation for inviscid fluid – circulation – Kelvin"s theorem – vortex motion – Helmholtz equation.

UNIT III:

Two Dimensional Motion – Two Dimensional Functions – Complex Potential – basic singularities – source – sink – Vortex – doublet – Circle theorem. Flow past a circular cylinder with circulation – Blasius Theorem – Lift force. (Magnus effect)

UNIT IV:

Viscous flows – Navier-Stokes equations – Vorticity and circulation in a viscous fluid – Steady flow through an arbitrary cylinder under pressure – Steady Couettc flow between cylinders in relative motion – Steady flow between parallel planes.

UNIT V:

Laminar Boundary Layer in incompressible flow: Boundary Layer concept – Boundary Layer equations – Displacement thickness, Momentum thickness – Kinetic energy thickness – integral equation of boundary layer – flow parallel to semi infinite flat plate – Blasius equation and its solution in series.

TEXT BOOKS:

For Units I and II: Theoretical Hydro Dynamics by L.M. Milne Thomson, Macmillan Company, 5th Edition (1968).

Chapter I :	Sections 1.0 – 1.3., 3.10-3.41 (omit 3.32)
Chapter III:	Sections 3.42 – 3.53 (omit 3.44)

For Units III, IV and V: Modern Fluid Dynamics (Volume I) by N. Curlea and H.J. Davies, D Van Nostrand Company Limited., London (1968).

Chapter III :	Sections 3.1	- 3.7.5 (omit 3.3.4, 3.4, 3.5.2, 3.6)
Chapter V :	Sections 5.1	- 5.3.3
Chapter VI:	Sections 6.1	- 6.3.1 (omit 6.2.2., 6.2.5)

References:

1. F.Chorlton, Textbook of Fluid Dynamics, CBS Publishers, New Delhi, 2004.

2.A.J.Chorin and A.Marsden, A Mathematical Introduction to Fluid Dynamics, Springer-Verlag, New York, 1993.

Paper 11: MATHEMATICAL STATISTICS

<u>UNIT– I</u>:

Probability and Distributions: Introduction - Set Theory - The Probability Set Function - Conditional Probability and Independence –Random Variables - Discrete Random Variables-Continuous Random Variables.

<u>UNIT – II</u>:

Probability and Distributions (continued): Expectation of a Random Variables - Some Special Expectations - Important Inequalities.

Multivariate Distributions: Distributions of Two Random Variables - Transformations: Bivariate Random Variables - Conditional Distributions and Expectations - Independent Random Variables.

<u>UNIT – III</u>:

Some Special Distributions: The Binomial and Related Distributions - The Poisson Distribution - The Γ , $\chi 2$, and β Distributions - The Normal Distribution.

<u>UNIT – IV</u>:

Some Special Distributions (continued): t and F-Distributions.

Unbiasedness, Consistency and Limiting Distributions: Expectations of Functions - Convergence in Probability - Convergence in Distribution - Central Limit Theorem.

<u>UNIT–V</u>:

Some Elementary Statistical Inferences: Sampling and Statistics – More on Confidence Intervals - Introduction to Hypothesis Testing - Additional Comments About Statistical Tests - Chi-Square Tests – The Method of Monte Carlo.

Text Book:

Introduction to Mathematical Statistics By Robert V. Hogg, Allen T. Craig and Joseph W. McKean. Pearson, 6th Edn.(2005).

Unit-I: 1.1 – 1.7, Unit-II: 1.8 – 1.10, 2.1 – 2.3, 2.5, Unit-III: 3.1 – 3.4, Unit-IV: 3.6, 4.1 – 4.4, Unit-V: 5.1, 5.4 – 5.8.

<u>Reference Books</u>:

- 1. The R Book By Michael J. Crawley. John Wiley & Sons, 2nd Edn. (2013).
- 2. Probability Theory and Mathematical Statistics By Marek Fisz. John Wiley.
- 3. Statistical Inference By M. Rajagopalan and P. Dhanavanthan. PHI Learning Pvt. Ltd., New Delhi (2012).
- 4. An Introduction to Probability and Statistics By Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh. Wiley India, 2nd Edn. (2001).

PAPER 12: GRAPH THEORY

UNIT I:

Graphs, Subgraphs: Graphs and Simple Graphs– Graph Isomorphism – The Incidence and Adjacency matrices, Subgraphs – Vertex Degrees – paths and Connection – Cycles. **Trees:** Trees – Cut edges and Bonds – cut vertices – Cayley''s formula

UNIT II:

Connectivity: Connectivity – Blocks. **Euler tours and Hamilton Cycles:** Euler tours - Hamilton Cycles

UNIT III:

Matchings: Matchings coverings in Bipartite Graphs – Perfect Matchings. **Edge colourings:** Edge chromatic number – Vizing"s theorem.

UNIT IV:

Independent sets, Cliques: Independent sets – Ramsey"s theorem.

Vertex Colourings: Chromatic Number – Brook"s Theorem – Hajo"s Conjecture – Chromatic Polynomials – Girth and Chromatic number.

UNIT V:

Planar Graphs: Plane and planar Graphs – Dual Graphs – Euler"s formula – Brides – Kuratowski"s theorem (Proof omitted) – The Five Colour Theorem and the Four Colour Conjecture

Directed Graphs: Directed Graphs

Simple problems in the exercise of all units can also be included.

Text Book:

J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, American Elsevier Publishing Company Inc., New York, 1976.

Sections:	1.1	-1.7 and $2.1 - 2.4$.
Sections:	3.1	-3.2 and $4.1 - 4.2$
Sections:	5.1	-5.3 and $6.1 - 6.2$
Sections:	7.1	-7.2 and 8.1 – 8.5
Sections:	9.1	–9.6 and 10.1
	Sections: Sections: Sections: Sections: Sections:	Sections:1.1Sections:3.1Sections:5.1Sections:7.1Sections:9.1

REFERENCE BOOKS:

- 1. Harary F, Graph Theory, Addison Wesley, Reading Mass, 1969.
- 2. M.Murugan, Graph Theory and Algorithms, Second Edition, Muthali Publishing House, Chennai, 2018.
- 3. K.R.Parthasarathy, Basic Graph Theory, Tata McGraw Hill, New Delhi, 1994.
- 4. D.B.West, Introduction to graph theory, Prentice Hall of India, 2001.

Paper 13: FUNCTIONAL ANALYSIS

UNIT I:

Banach spaces – The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem –Dual spaces- The natural imbedding of N in N** - The open mapping theorem - Closed Graph theorem.

UNIT II:

The conjugate of an operator – Uniform boundedness Principal - Hilbert spaces – The definition and some simple properties – Orthogonal complements and complements - Orthonormal sets and sequences – Maximal Othonormal sets.

UNIT III:

The Conjugate space H* - Representation of functional on Hilbert spaces - The adjoint of an operator – Self-adjoint operators – Normal and unitary operators – Projections.

UNIT IV:

 $Matrices-Determinants \ and \ the spectrum \ of \ bounded \ operator-The \ spectral \ theorem.$

UNIT V:

The definition and some examples of Banach algebra – Regular and singular elements – Topological divisors of zero – The spectrum – The formula for the spectral radius.

Text Book:

G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw–Hill Book Company, London, 1963.

Unit I:	Sections: 46 – 50.
Unit II:	Sections: 51 – 54.
Unit III:	Sections: 55 – 59.
Unit IV:	Sections: 60 – 63.
Unit V:	Sections: 64 – 68.

Reference Books:

1.C. Goffman and G. Pedrick, A First Course in Functional Analysis, Prentice Hall of India, New Deli, 1987.

2.G. Bachman and L. Narici, Functional Analysis, Academic Press, New York, 1966.

3.L.A. Lusternik and V.J. Sobolev, Elements of Functional Analysis, Hindustan Publishing Corporation, New Delhi, 1971.

Paper 14: MATHEMATICAL METHODS

UNIT I: INTEGRAL EQUATIONS: Types of Integral equations – Integral Fredholm Alternative - Approximate method – Equation with separable Kernel - Volterra integral equations – Fredholm's theory.

UNIT II: APPLICATION OF INTEGRAL EQUATIONS TO ORDINARY INTEGRAL EQUATIONS and SINGULAR INTEGRAL EQUATIONS: Initial value problems Boundary value problems – singular integral equations – Abel Integral equation

UNIT III: FOURIER TRANSFORMS: Fourier Transforms, Fourier sine and cosine transforms – Fourier transforms of derivatives - convolution integral – Parseval"s Theorem - Solution of Laplace Equations by Fourier transform.

UNIT IV: HANKEL TRANSFORMS: Properties of Hankel Transforms – Hankel transformation of derivatives of functions - The Parseval''s relation – relation between Fourier and Hankel transforms - Axisymmetric Dirichlet problem for a half space - Axisymmetric Dirichlet problem for a thick plate.

UNIT V: CALCULUS OF VARIATIONS: Variation and its properties – Euler"s(Euler Lagrange"s) equation – functionals dependent on the functions of several independent variables – variational problems in parametric form –applications.

TEXT BOOKS:

1. Linear Integral Equations Theory and Technique by R.P.Kanwal, Academic Press, New York, 1971.

	Unit I	:Chapter 2:	2.4 - 2.7, 2.9 -	-2.10, 2.16 - 2-(a).(c) 2.16.				
Unit II :Chapter 5: 5.2 5.4, 5.6 – 5.7, 5.10 – 5.12.				12.				
2. The	2. The Use of Integral Transforms by I.N.Sneddon, McGraw-Hill, NewYork, 1972.							
	Unit III	:Chapter 2:	2.3 - 2.5,	Chapter 3:	3.3-3.4.			
	Unit IV	:Chapter 5:	ыцпео 5 ² 1 – 5.2,	Chapter 8:	8.1-8.2.			

3. Differential Equations and Calculus of Variations by L.Elsgolts, Mir Publishers, Moscow, 1970.

Paper 15: OPTIMIZATION TECHNIQUES

PRE REQUISITES: The learner should have basic knowledge from linear programming, simplex and dual simplex method and graphical method.

UNIT I: INTEGER PROGRAMMING: Introduction – Integer Programming Formulations – Gomory''s construction–Fractional cut method(all integer)–The Cutting – Plane Algorithm – Branch–and–Bound Technique – Zero–One Implicit Enumeration Algorithm.

UNIT II: DYNAMIC PROGRAMMING: Introduction – Application of Dynamic Programming: Capital Budgeting Problem – Reliability Improvement Problem – Stage–coach Problem – Cargo Leading Problem – Minimizing Total Tardiness in Single Machine Scheduling Problem – Optimal Subdividing Problem – Solution of Linear Programming Problem through Dynamic Programming.

UNIT III: INVENTORY: Introduction–Inventory Decisions–Cost Associated– with Inventories –Factors Affecting inventory–Economic Order Quantity–Deterministic Inventory Problems with No Shortages–Deterministic inventory Models with shortages–EOQ with Price Breaks–Multi Item Deterministic problems–Inventory Problems with Uncertain Demand.

UNIT IV: QUEUING THEORY: Introduction–Queuing System–Elements Of Queuing System–Operating Characteristics of Queuing System–Classification of Queuing Models– $Model-I(M/M/1):(\infty/FIFO),Model-II(M/M/1)$: (N/FIFO),Model–III(M/M/C):(∞ /FIFO), Model–II(M/M/C):(∞ /FIFO),Problems in above four models.

UNIT V: NON LINEAR PROGRAMMING: Introduction – Lagrangean Method – Jacobi Method – Kuhn–Tucker Method – Quadratic Programming – Separable Programming – Chance–Constrained Programming or Stochastic Programming.

TEXT BOOK:

Hamdy A. Taha, Operations Research(sixth edition) Prentice–Hall of India private Limited, New Delhi,1997.

REFERENCE BOOKS:

1. Kanti Swarup, P.K. Gupta, Man Mohan, Operations Research, Sultan Chand & Sons, Educational Publishers, New Delhi.

2. Panneerselvam.R, Operations Research, 2nd Edition, PHI Learning Private Limited, Delhi, 2015

3. Hiller.F.S & Lieberman.J Introduction to Operation Research ,7th Edition, Tata– MCGraw Hill Publishing Company, NewDelhi, 2001.

4. Prem Kumar Gupta.Er, Hira.D.S. Operations Research,7th Edition,S.Chand & Company Pvt.Ltd.2014.

5. I.Griva, S.G.Nash and A.Sofer, Linear and Nonlinear Optimization, SIAM Publication, Universities Press(India) Pvt Ltd,2018.

PAPER 16: COMPUTER PROGRAMMING (C++ THEORY)

UNIT I:

Basic Concept of Object-Oriented Programming: Benefits of OOP – Object-Oriented Languages – Applications of OOP.

Tokens, Expressions and Control Structure: Introduction – Tokens – Keywords – Identifiers and Constants – Basic Data Types – User Defined Data Types – Storage Classes – Derived Data Types –Symbolic Constants – Type Compatibility – Declaration of Variables – Dynamic Initialization of Variables – Reference Variables – Operations in C++ - Scope Resolution Operator – Member Dereferencing Operators – Memory Management Operators – Manipulators – Type Cast Operator – Expressions and Their Types – Special Assignment Expressions – Implicit Conversions – Operator Over Loading – Operator Precedence –Control Structures.

UNIT II:

Functions in C++: Introduction – The Main Function – Function Prototyping – Call by Reference– Return by Reference – Inline Functions – Default Arguments – const Arguments – Recursion – Function Over Loading – Friend and Virtual Functions – Math Library Functions.

Managing Console I/O Operations: Introduction – C++ Streams – C++ Stream Classes – Unformatted I/O Operations – Formatted I/O Operations – Managing Output with Manipulators.

UNIT III:

Classes and Objects: Introduction – C Structures Revisited – Specifying a Class – Defining Member Functions – A C++ Program with Class – Making An Outside Function Inline –Nesting Of Member Functions – Private Member Functions – Arrays Within A Class – Memory Allocation for Objects – Static Data Members – Static Member Functions – Arrays of Objects as Function Arguments – Friendly Functions – Returning Objects – const Member Functions.

Constructors and Destructors: Introduction – Constructors – Parameterized Constructors– Multiple Constructors in a Class – Constructors with Default Arguments – Dynamic Initializations of Objects – Copy Constructor –const Objects – Destructors.

UNIT IV:

Operator Overloading: Introduction – Defining Operator Overloading – Overloading Unary Operators – Overloading Binary Operators – Overloading Binary Operators Using Friends – Manipulating of Strings Using Operators – Some Other Operator Overloading Examples – Rules for Overloading Operators.

Inheritance - Extending Classes: Introduction – Defining Derived Classes – Single Inheritance – Making a Private Member Inheritable – Multilevel Inheritance – Multiple Inheritance – Hierarchical Inheritance – Hybrid Inheritance – Virtual Base Classes – Abstract Classes – Constructors in Derived Classes – Member Classes: Nesting of Classes.

UNIT-V:

Working with Files: Introduction – Classes for File Stream Operations - Opening and Closing a File – Detecting End-of-File – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access – Error Handling During File Operations.

Text Book:

Object–Oriented Programming with C++ by E. Balaguruswamy, Tata McGraw-Hill Publishing Company Limited, Sixth Edition.

Unit I: 1.4 – 1.6 and 3.1 – 3.25 Unit II: 4.1 – 4.12 and 10.1 – 10.6 Unit III: 5.1 – 5.17, 6.1 – 6.7 and 6.10 – 6.11 Unit IV: 7.1 – 7.8 and 8.1 – 8.12 Unit V: 11.1 – 11.9

PRACTICAL - COMPUTER PROGRAMMING (C++ PRACTICAL)

<u>1.</u> <u>**friend FUNCTION usage:**</u> Create two classes to store the value of distances in meterscentimetres and feet-inches. Write a program that can create the values of the class objects and add one object with another. Use a friend function to carry out addition operation. The result may be stored in any object depending on the units in which results are required. The display should be in the order of meters & centimetre and feet & inches depending on the order of display.

<u>2.</u> <u>**OVERLOADING OBJECTS:**</u> Create a class that contains one float data member. Overload all the four arithmetic operators so that operate on the objects of the class.

3. OVERLOADING CONVERSIONS: Design a class Polar which describes a point in a plane using polar co-ordinates radius and angle. Use the overloaded + operator to add two objects of Polar. Note that we cannot add polar values of two points directly. This requires first the conversion of points into rectangular co-ordinates and finally converting the result into polar co-ordinates. You need to use following trigonometric formulae: = r * cos (a);= r * sin (a); = ; = * + *.

<u>4.</u> <u>OVERLOADING VECTOR:</u> Define a class for Vector containing scalar values. Apply overloading concepts for Vector Addition, Multiplication of a Vector by a scalar quantity, replace the values in a Position Vector.

5. OVRELOADING MATRIX:

Create a class **MAT** of size m * n. Define all possible matrix operations for **MAT** type objects. Verify the identity: $(A-B)^2 = A^2+B^2-2AB$.

<u>6.</u> INHERITANCE: Create three classes: **alpha**, **beta** and **gamma**, each containing one data member. The class **gamma** should be inherited from both **alpha** and **beta**. Use a constructor function in the class **gamma** to assign values to the data members of all the classes. Write a program to print the value of data members of all the three classes.

<u>7. FILE HANDLING:</u> Write a program to create a disk file containing the list of names and telephone numbers in two columns, using a class object to store each set of data. Design an interactive menu to access the file created and to implement the following tasks:

(a) Determine the telephone number of the specified person.

(b) Determine the name if a telephone number is known.

(c) Update the telephone number, whenever there is a change.

ELECTIVE PAPERS

Elective 1: NUMBER THEORY

UNIT I: Divisibility and Euclidean algorithm.

UNIT II: Congruences, Euler"s theorem, Wilson"s Theorem. Solutions of congruences, Congruences of Degree 1. Chinese Remainder Theorem, The functions $\phi(n)$, Congruences of higher degree

UNIT III: Prime power moduli, Prime modulus. Quadratic residues.- Quadratic reciprocity.

UNIT IV: The Jacobi symbol – Greatest integer function - Arithmetic functions – The Moebius Inversion formula

UNIT V: Multiplication of arithmetic functions, Linear Diophantine equations – The equation $x^2 + y^2 = z^2$ - The equation $x^4 + y^4 = z^2$.

Text Book:

An Introduction to Theory of Numbers by Ivan Nivan and Herberts Zucherman. Third Edition, 1972, Wiley Eastern Limited, New Delhi.

Unit-I:	Chapter I:	Sections 1.1 – 1.3
Unit-II:	Chapter II:	Section: 2.1 – 2.5
Unit-III:	Chapter II:	Section: 2.6 – 2.7
	Chapter III:	Sections: 3.1 – 3.2
Unit-IV:	Chapter III:	Sections: 3.3
	Chapter IV:	Sections:4.1-4.3
Unit-V:	Chapter IV:	Sections:4.4
	Chapter V:	Section: 5.1-5.6

Reference Books:

1.T.M. Apostol, Introduction to Analytic Number Theory, Springer Verlag, 1976.

2.Kennath and Rosan, Elementary Number Theory and its Applications, Addison Wesley Publishing Company, 1968.

3.George E. Andrews, Number Theory, Hindustan Publishing, New Delhi, 1989.

ELECTIVE 2: DIFFERENTIAL GEOMETRY

UNIT I:

Curves: Analytic representation - Arc Length – Osculation plane.

UNIT II:

Curvature torsion – Formulas of Frenet - Contact – Natural equations – Helices – General solutions of Natural equations.

UNIT III:

Evolutes and Involutes - Elementary theory of surface: Analytic representation.

UNIT IV:

First fundamental form – Normal, Tangent plane – Developable surfaces - Second fundamental form.

UNIT V:

Meusnier"s theorem – Euler"s Theorem – Dupin"s indicatrix – Some surfaces.

Text Book:

D. Struik, Lectures on Classical Differential Geometry, Addison Wesley Publishing Company, 1961.

ELECTIVE 3: NEURAL NETWORKS

UNIT I:

Mathematical Neuron Model- Network Architectures- Perceptron-Hamming Network- Hopfield Network-Learning Rules.

UNIT II:

Perceptron Architectures and Learning Rule with Proof of Convergence. Supervised Hebbian Learning -Linear Associator.

UNIT III:

The Hebb Rule-Pseudo inverse Rule-Variations of Hebbian Learning-Back Propagation - Multilayer Perceptrons.

UNIT IV:

Back propagation Algorithm-Convergence and Generalization - Performances Surfaces and Optimum Points-Taylor series.

UNIT V:

Directional Derivatives - Minima-Necessary Conditions for Optimality-Quadratic Functions-Performance Optimizations-Steepest Descent-Newton's Method-Conjugate Gradient.

Text Book:

Martin T.Hagan, Howard B. Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002.

Reference Books:

1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003.

2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997.

ELECTIVE 4: MAGNETOHYDRODYNAMICS

UNIT I:

Electromagnetism – Fundamental Laws – Electrostatic Energy – Electrodynamics Ampere''s Law – Lorentz force on a moving charge – Magnetostatic Energy – Faraday''s Law of Induction – Poynting stresses.

UNIT II:

Electromagnetic Equations with respect to moving axes – boundary conditions of electric and magnetic fields. Kinematics of fluid motion – equation of continuity – Stress tensor – Navier-stokes equations – boundary condition – Velocity Magneto fluid dynamic equations.

UNIT III:

MHD approximation – equation of Magnetic diffusion in a moving conducting medium – Magnetic Reynolds number.

UNIT IV:

 $\label{eq:alfven} Alfven``s theorem Law of isorotation - Magneto hydrostatics - Force-free field - Alfven waves in incompressible MHD.$

UNIT V:

Incompressible viscous flows in the presence of magnetic field – Hartmann Flow – unsteady Hartmann flow – Magneto fluid dynamic pipe flow.

Text Books:

1.Crammer K.R. and Pai S.I, Magneto Fluid Dynamics for Engineers and Applied Physicists, McGraw Hill, 1973.

2. Ferraro, VCA and Plumpton, Introduction to Magneto Fluid Dynamics, Oxford, 1966.

ELECTIVE 5: FUZZY LOGIC AND FUZZY SETS

UNIT-I: CRISP SETS AND FUZZY SETS

Introduction-Crisp sets: An over view-The Notion of Fuzzy Sets-basic concepts of Fuzzy Sets – Classical Logic: complement-Fuzzy Union-Fuzzy interaction – Combination of operations – General aggregation of operations.

UNIT-II: FUZZY RELATIONS

Crisp and Fuzzy relations – Binary relations – Binary relations on a single set – Equivalence and similarity relations – Compatibility on Tolerance Relations-Orderings – Morphism – Fuzzy relations Equations.

UNIT-3: FUZZY MEASURES

General discussion – Belief and plausibility Measures – Probability measures – Possibility and Necessity measures .

UNIT-4: FUZZY MEASURES, UNCERTAINTY

Relationship among classes of fuzzy measures - Types of Uncertainty – Measures of Fuzziness-Classical Measures of Uncertainty .

UNIT-5: UNCERTAINTY AND INFORMATION

Measures of Dissonance-Measures of Confusion – Measures of Non-Specificity – Uncertainty and Information – Information and Complexity – Principles of Uncertainty and information.

Text Book:

George J. Klir and Tina A. Folger - Fuzzy Sets, Uncertainty and Information. Prentice Hall of India Private Limited [Fourth printing. June 1995].

Unit-I: 1.1 – 1.5, 2.2 - 2.6, Unit-II: 3.1 – 3.8, Unit-III: 4.1 – 4.4, Unit-IV: 4.5, 5.1 – 5.3, Unit-V: 5.4 – 5.9.

Reference Book:

1. George J. Klir and Boyuan - Fuzzy Sets and Fuzzy Logic - Theory and Applications, Prentice-Hall of India Private Limited

ELECTIVE 6: CONTROL THEORY

UNIT I:

OBSERVABILITY: Linear Systems – Observability Grammian – Constant coefficient systems – Reconstruction kernel – Nonlinear Systems

UNIT II:

CONTROLLABILITY: Linear systems – Controllability Grammian – Adjoint systems – Constant coefficient systems – steering function – Nonlinear systems

UNIT III:

STABILITY: Stability – Uniform Stability – Asymptotic Stability of Linear Systems.

UNIT IV:

Linear time varying systems – Perturbed linear systems – Nonlinear systems

UNIT V:

STABILIZABILITY: Stabilization via linear feedback control – Bass method – Controllable subspace – Stabilization with restricted feedback

Text Book:

Elements of Control Theory by K.Balachandran and J.P.Dauer, Narosa, New Delhi, 1999.

Reference Books:

1. Linear Differential Equations and Control by R.Conti, Academic Press, London, 1976.

2. Functional Analysis and Modern Applied Mathematics by R.F.Curtain and A.J.Pritchard, Academic Press, New York, 1977.

3. Controllability of Dynamical Systems by J.Klamka, Kluwer Academic Publisher, Dordrecht, 1991.

4. Mathematics of Finite Dimensional Control Systems by D.L.Russell, Marcel Dekker, New York, 1979.

5. E.B. Lee and L. Markus, Foundations of optimal Control Theory, John Wiley, New York, 1967

ELECTIVE 7: CRYPTOGRAPHY

UNIT I:

 $Introduction-Encryption\ and\ Secrecy-The\ objective\ of\ Cryptography-Number\ Theory-Introduction-Modular\ Arithmetic.$

UNIT II:

Integer factorization problem – Pollard"s rho factoring – Elliptic curve factoring – Discrete logarithm problem

UNIT III:

Finite fields – Basic properties – Arithmetic of polynomials –Factoring polynomials over finite fields – Square free factorization

UNIT IV:

Symmetric key encryption – Stream ciphers – Block Ciphers – DES

UNIT V:

Public key cryptography – Concepts of public key cryptography – Modular arithmetic – RSA – Discrete logarithm – Elliptic curve cryptography

Reference Books:

1. Hans Delfs, Helmut Knebl, Introduction to Cryptography, Springer Verlag, 2002

2. Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, 2000

3. William Stallings, Cryptography and Network Security, Prentice Hall of India, 2000

ELECTIVE 8 : MATLAB

Unit – I:

STARTING WITH MATLAB: Starting MATLAB, MATLAB Windows - Working in the Command Window - Arithmetic Operations with Scalars - Display Formats - Elementary Math Built-In Functions - Defining Scalar Variables - Useful Commands for Managing Variables - Script Files - Examples of MATLAB Applications.

CREATING ARRAYS: Creating a One-Dimensional Array (Vector) - Creating a Two-Dimensional Array (Matrix) - Notes about Variables n MATLAB - The Transpose Operator - Array Addressing - Using a Colon : In Addressing Arrays - Adding Elements to ExistingVariables -Deleting Elements - Built-In Functions for Handling Arrays - Strings and Strings as Variables.

Unit – II:

MATHEMATICAL OPERATIONS WITH ARRAYS: Addition and Subtraction - Array Multiplication - Array Division - Element-By-Element Operations - Using Arrays In MATLAB Built-In Math Functions - Built-In Functions For Analyzing Arrays - Generation Of Random Numbers - Examples Of MATLAB Applications.

USING SCRIPT FILES AND MANAGING DATA: The MATLAB Workspace and the Workspace Window - Input To A Script File - Output Commands - The Save And Load Commands - Importing And Exporting Data - Examples Of MATLAB Applications.

Unit – III:

TWO-DIMENSIONAL PLOTS: The plot Command - The fplot Command - Plotting Multiple Graphs in the Same Plot - Formatting a Plot - Plots With Logarithmic Axes - Plots With Error Bars - Plots With Special Graphics - Histograms - Polar Plots - Putting Multiple Plots on the Same Page - Multiple Figure Windows - Examples of MATLAB Applications.

THREE-DIMENSIONAL PLOTS: Line Plots - Mesh and Surface Plots - Plots With Special Graphics - The View Command - Examples owMatlab Applications.

Unit – IV:

PROGRAMMING IN MATLAB: Relational and Logical Operators - Conditional Statements - The Switch-Case Statement - Loops - Nested Loops and Nested Conditional Statements - The Break and Continue Commands - Examples of MATLAB Applications.

USER-DEFINED FUNCTIONS AND FUNCTION FILES: Creating A Function File - Structure of a Function File - Local And Global Variables - Saving A Function File - Using A User- Defined Function - Examples of Simple User-Defined Functions - Comparison Between Script Files and Function Files - Anonymous And Inline Functions - Function Functions - Subfunctions - Nested Functions - Examples Of MATLAB Applications.

Unit – V:

POLYNOMIALS, CURVE FITTING, AND INTERPOLATION: Polynomials - Curve Fitting - Interpolation - The Basic Fitting Interface - Examples of MATLAB Applications.

APPLICATIONS IN NUMERICAL ANALYSIS: Solving an Equation with One Variable -Finding a Minimum or a Maximum of a Function - Numerical Integration - Ordinary Differential Equations - Examples of MATLAB Applications.

Treatment as in:

MATLAB An Introduction with Applications By AmosGilat. JOHN WILEY & SONS, INC., 2011.

<u>Reference Books</u>:

- 1. Getting Started with MATLAB A Quick Introduction for Scientists and EngineersBy RUDRA PRATAP. Oxford University Press.
- 2. Introduction to MATLAB 7 for Engineers By William John Palm. McGraw-Hill Professional, 2005.
- 3. Introduction to MATLAB 7 By Dolores M. Etter, David C. Kuncicky, Printice Hall, 2004.

ELECTIVE 8: MATLAB

List of Practical Problems

1. Solve the following system of five linear equations:

3u + 1.5v + w + 0.5x + 4y = -11.75- 2u + v + 4w - 3.5x + 2y = 19 6u - 3v + 2w + 2.5x + y = -23 u + 4v - 3w + 0.5x - 2y = -1.5 3u + 2v - w + 1.5x - 3y = -3.5

Verify the solution by substituting in all the 5 equations.

- 2. Create a script file to write a program for saving the output in two files using "fprintf" command. The program should generate two unit conversion tables. One table converts velocity units from miles per hour to kilometres per hour, and the other table converts force units from pounds to newtons. Save each conversion table to a different text file.
- 3(a) Plot the function $f(x)=\cos x \sin(2x)$ and its derivative, both on the same plot, for $\pi \le x \le \pi$. Plot the function with a solid line, and the derivative with a dashed line. Add a legend and label the axes.
 - (b) Plot the function, $r = 3 \cos^2(0.5\theta) + \theta$ for $0 \le \theta \le 2\pi$ using "polar" command.
- 4. Write a program in a script file that determines e^x by using the Taylor series representation. The program calculates e^x by adding terms of the series and stopping when the absolute value of the term that was added last is smaller than 0.0001. Use a "while-end" loop, but limit the number of passes to 30. If in the 30th pass the value of the term that is added is not smaller than 0.0001, the program stops and displays a message that more than 30 terms are needed. Use the program to calculate e^2 , e^{-4} , and e^{21} .

5. Write a programmeinascript file that determines the real roots of a quadratic equation

 $ax^{2}+bx+c = 0$. Name the file "quadroots". When the file runs, it asks the user to enter the values of the constants *a*, *b*, and *c*. To calculate the roots of the equation the program calculates the discriminant *D*, given by:

$$D = b^2 - 4ac.$$

- If D > 0, the program displays message "The equation has two roots," and the roots are displayed in the next line.
- If D = 0, the program displays message "The equation has one root," and the root is displayed in the next line.
- If D < 0, the program displays message "The equation has no real roots."

Run the script file in the Command Window three times to obtain solutions to the following three equations:

(a) $2x^2 + 8x + 8 = 0$, (b) $-5x^2 + 3x - 4 = 0$, (c) $-2x^2 + 7x + 4 = 0$.

6. The following data points, which are points of the function $f(x) = 1.5^x \cos(2x)$, are given. Use "linear", "spline", and "pchip" interpolation methods to calculate the value of y between the points. Make a figure for each of the interpolation methods. In the figure show the points, a plot of the function, and a curve that corresponds to the interpolation method.

X	0	1	2	3	4	5
Y	1.0	-0.6242	-1.4707	3.2406	-0.7366	-6.3717

Also, use the "Basic Fitting Interface Tool" to show the equation, plot residuals, norm of residuals and the fit.

7. Solve:
$$\frac{dy}{dx} = \sqrt{x} + \frac{x^2 \sqrt{y}}{4}$$
 for $1 \le x \le 5$ with $y(1) = 1$. Plot the solution.

ELECTIVE 9: LaTex

UNIT I:

Text formatting, TEX and its offspring, What''s different in LATEX 2ε , Distinguishing LaTex 2ε , Basics of a LaTex file.

UNIT II:

Commands and Environments–Command names and arguments, Environments, Declarations, Lengths, Special Characters – Spaces and carriage returns, Quotation marks, Hyphens and dashes, Printing command characters, The date, Exercises.

UNIT III:

Document Layout and Organization – Document class, Page style, Parts of the document, Table of contents – Automatic entries, Printing the table of contents, Fine-Tuning text – Line breaking, Page breaking. Displayed Text – Changing font – Emphasis, Choice of font size, Font attributes, Centering and indenting, Lists.

UNIT IV:

Tables, Printing literal text, Footnotes and marginal notes.

UNIT V:

Mathematical Formulas – Mathematical environments, Main elements of math mode, Mathematical symbols – Greek letters, function names, Additional elements, Fine–tuning mathematics – Horizontal spacing, Selecting font size in formulas.

Text book:

A Guide to LATEX by H. Kopka and P.W. Daly, - Third Edition, Addison – Wesley, London, 1999.

Unit I : Chapter 1 : Sections : 1.1-1.3, 1.4.1, 1.5. Unit II : Chapter 2 : Sections : 2.1-2.4, 2.5.1-2.5.4, 2.5.9, 2.7. Unit III : Chapter 3 : Sections : 3.1-3.3, 3.4.1, 3.4.2, 3.5.2, 3.5.5, Chapter 4 : 4.1.1-4.1.3, 4.2, 4.3 Unit IV : Chapter 4 : Sections : 4.8-4.10. Unit V : Chapter 5: Sections : 5.1, 5.2, 5.31, 5.3.8, 5.4, 5.4.1 – 5.4.8, 5.5.1, 5.5.2.

Reference Book:

Fundamentals of Latex for Mathematicians, Physicists and Engineers

- by Velusamy Kavitha and Mani Mallikarjunan [LAP LAMBERT Academy Publishing, Germany, 2013.]
ELECTIVE 9: LaTex – List of Practical Problems

(Students has to attend two questions - one from each group)

<u>Group - A</u>

A1. Type the following paragraph in LaTex, using the {quote} environment. Format the paragraph with the following: Text height - 9.5 inches, Text width - 6.3 Inches, Left margin -0.1 Inch, Right margin -0.12 Inch, Top margin - 0.6 Inch, Line space -1.5 Inches. Also, include a Footnote.

Today (<Current Date>) the rate of exchange between the American dollar and Indian rupee is \$1 = ₹65, an increase of 10% over the last year.

- A2. Produce a document in LaTex, using two-columns. Insert a title centred for the two columns.
- A3. Produce a title page in LaTex, with the following:

(i) Title of the page, (ii) Name and Addresses of two authors, (iii) Footnotes for the telephone members of each author, (iv) Date.

A4. Create a document in LaTex to produce the bibliographic information, using the {bibliography} environment.

<u>Group – B</u>

- B1. Create a blank form produced as a framed table. Use the commands *struts* and *\hspace*.
- B2. Create the following table using LaTeX:

S.No.	Register Number	Name of the Student	Percentage of Marks	Rank
1	XXXXXX	xxxxxx	XXXXX	XXXX
2	XXXXXX	XXXXXXX	XXXX	XXXX
3	XXXXXX	XXXXXX	XXXX	XXXXX

B3. Using LaTeX, generate the following formula:

$$a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \frac{1}{a_{4}}}}} + \binom{a \ b}{c \ d} + \sum_{\alpha=0}^{\infty} (\beta^{\alpha} + \Gamma^{\alpha})$$

B4. Using LaTeX, generate the following with {eqnarray} environment:

$$(x + y)(x - y) = x^{2} - xy + xy - y^{2}$$

= $x^{2} - y^{2}$ (1.1)
 $(x + y)^{2} = x^{2} + 2xy + y^{2}$ (1.2)

$$(x+y)^2 = x^2 + 2xy + y^2$$
(1)

$$x_nu_1 + \cdots + x_{n+t-1}u_t = x_nu_1 + (a x_n + c)u_2 + \cdots$$

$$+ a^{t-1}x_n + c(a^{t-2} + \dots + 1) u_t$$

$$= (u_1 + a u_2 + \dots + a^{t-1}u_t) x_n + h (u_1, \dots, u_t)$$

10 - ELEMENTS OF STOCHASTIC PROCESSES

<u>UNIT I:</u> Continuous Time Markov Chain, Examples, Transient Analysis, Occupancy Times, Limiting Behaviour

<u>UNIT II:</u> Renewal Process, Cumulative Process, Semi-Markov Process, Examples and Long term Analysis

<u>UNIT III:</u> Queueing Systems, Single-Station Queues, Birth and Death queues with Finite and Infinite Capacity

UNIT IV: M/G/1 and G/M/1 Queues and Network of Queues

<u>UNIT V:</u> Standard Brownian Motion, Brownian Motion and First Passage Times

REFERENCE BOOKS:

1. V.G. Kulkarni, Introduction to Modelling and Analysis of Stochastic Systems, Second Edition, Springer (2011)

- 2. J. Medhi, Stochastic Processes, NEW AGE (2009).
- 3. S. M. Ross, Stochastic Processes, Wiley Series in Probability and Statistics (1996).

Syllabus

AFFILIATED COLLEGES

Program Code: 32A

2021 – 2022 onwards

BHARATHIAR UNIVERSITY

(A State University, Accredited with "A" Grade by NAAC, Ranked 13th among Indian Universities by MHRD-NIRF, World Ranking: Times -801-1000,Shanghai -901-1000, URAP - 982)

Coimbatore - 641 046, Tamil Nadu, India

Instruction : PEOs are:

- Statement of areas or fields where the graduates find employment
- Preparedness of graduates to take up higher studies

Program Educational Objectives (PEOs)

The **M. Sc. Mathematics** program describe accomplishments that graduates are expected to attain within five to seven years after graduation

PEO1	Provide a strong foundation in different areas of Mathematics, so that the students can compete with their contemporaries and excel in the various careers in Mathematics.
PEO2	Motivate and prepare the students to pursue higher studies and research, thus contributing to the ever-increasing academic demands of the country.
PEO3	Enrich the students with strong communication and interpersonal skills, broad knowledge and an understanding of multicultural and global perspectives, to work effectively in multidisciplinary teams, both as leaders and team members.
PEO4	Facilitate integral development of the personality of the student to deal with ethical and professional issues, and also to develop ability for independent and lifelong learning.

தந்து இந்தப்பாரை கூடு มก่อลูก- Colé

Instruction : : Program Specific Outcomes (PSOs)

These are what the students should be able to do at the time of graduation. The PSOs are program specific. PSOs are written by the department offering the program. There usually are five to seven PSOs for a department.

Program Specific Outcomes (PSOs)						
After the to	successful completion of M. Sc. Mathematics program, the students are expected					
PSO1	Communicate concepts of Mathematics and its applications.					
PSO2	Acquire analytical and logical thinking through various mathematical tools and techniques.					
PSO3	Investigate real life problems and learn to solve them through formulating mathematical models.					
PSO4	Attain in-depth knowledge to pursue higher studies and ability to conduct research. Work as mathematical professional.					
PSO5	Achieve targets of successfully clearing various examinations/interviews for placements in teaching, banks, industries and various other organizations/services.					
	Solution Compatere Conference Con					

Program Outcomes (POs)							
On successful completion of the M. Sc. Mathematics program, the students will be able to							
PO1	Demonstrate in-depth knowledge of Mathematics, both in theory and application.						
PO2	Attain the ability to identify, formulate and solve challenging problems in Mathematics.						
PO3	Know the various specialised areas of advanced mathematics and its applications.						
PO4	O4 Analyze complex problems in Mathematics and propose solutions using research- based knowledge.						
PO5	Obtain the accurate solutions for the community oriented problems via various mathematical models.						
PO6	Work individually or as a team member or leader in uniform and multidisciplinary settings.						
PO7	Crack lectureship and fellowship exams affirmed by UGC like CSIR-NET and SET.						
PO8	Apply the Mathematical concepts, in all the fields of learning including higher research, and recognize the need and prepare for lifelong learning.						
PO9	Know the use of computers both as an aid and as a tool to study problems in Mathematics.						
PO10	Inculcate the knowledge of formulation and apply the mathematical concepts which are suitable for real life applications.						

BHARATHIAR UNIVERSITY, COIMBATORE 641 046

M. Sc., Mathematics (CBCS PATTERN)

(Affiliated Colleges)

(For the students admitted from the academic year 2021 – 22 onwards)

Course	Title of the Course	Credite	He	ours	Maximum Marks		
Code	The of the course	Cicuits	Theory	Practical	CIA	ESE	Total
	FIRST	SEMESTI	ER	1	1		T
	Abstract Algebra	4	6	_	50	50	100
	Real Analysis	4	7	—	50	50	100
	Ordinary Differential Equations	4	7	—	50	50	100
	Numerical Methods	4	6	—	50	50	100
	Elective-I	4	4	—	50	50	100
		20	30	_	250	250	500
	SEC <mark>ON</mark>	<mark>d seme</mark> st	ΓER				
	Linear Algebra	4	6	—	50	50	100
	Complex Analysis	4	7	-	50	50	100
	Partial Differential Equations	4	7	-	50	50	100
	Mechanics	4	6	-	50	50	100
	Elective-II	4	4	12	50	50	100
	Total	20	30	-	250	250	500
	THIRD	SEMEST	ER				-
	Topology	4	7	100-	50	50	100
	Fluid Dynamics	4	7		50	50	100
	Mathematical Statistics	4	6	> -/	50	50	100
	Graph Theory	4	6	18	50	50	100
	Elective-III	4	4	/6-/	50	50	100
	Total	20	30	¥ ,4	250	250	500
	FOURT	H SEMEST	TER	Salar			
	Functional Analysis	intes 4 🛸	7	_	50	50	100
	Mathematical Methods	4	7	_	50	50	100
	Optimization Techniques	4	6	_	50	50	100
	Computer Programming (C++	4	4	_	50	50	100
	Theory)				50	50	100
	Computer Programming (C++	4	_	2	50	50	100
	Practical)						
	Elective-IV	4	4	_	50	50	100
	Project	6	_	_	50	100	150
	Total	30	28	2	350	400	750
	Grand Total	90					2250

For Elective Practical:

Matlab, LaTex	Theory	25	50	100
(Elective)	Practical	10	15	100

Course code		Paper 1: ABSTRACT ALGEBRA	L	Т	Р	С				
Core/Elective/S	Supportive	Core	6	0	0	4				
Dro roquisito		Basic knowledge in Modern Algebra at	Sylla	bus	20.2)1				
r re-requisite		Undergraduate level.	Versi	on	20-2	1				
Course Object	tives:									
The main objectives of this course are to:										
 To provide deep knowledge about various algebraic structures. To introduce Galois Theory and to see its application to the solvability of polynomial equations by radicals. 										
Expected Cou	rse Outcor	nes:								
On the succes	sful comple	tion of the course, student will be able to:								
1 Underst	and Sylows	theorem and its applications			K	3				
2 Formula	ate some sp	ecial types of rings and their properties.			K	6				
3 Acquire	knowledge	on extension fields and roots of polynomials			K	4				
4 Analyze	e the element	ts of Galois theory and Galois Groups over the ratio	nals		K	4				
5 Underst	and the bas	ic concepts of solvability by radicals and finite fields	•		K	2				
K1 - Rememb	oer; K2 - U	derstand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Create	e					
	E.	A Allelandon and the lite								
Unit:1	E	Group Theory		18	hou	rs				
Another Cour	nting Princi	ple, Sylow's Theorem: 1st, 2nd and 3rd parts of Sy	'low's	Theo	rems	. —				
double coset -	– the norma	lizer of a group.								
	<u> </u>				_					
Unit:2		Group Theory (contd) and Ring Theory		17	hou	rs				
Direct Produc	ts: Externa	and Internal direct Products, Euclidean Rings, A P	articula	ir Eu	clide	an				
Rings, Polync	omiai rings.	S S S S S S S S S S S S S S S S S S S		2						
Unit.3	00	Ring Theory (contd) and Fields		18	hou	re				
Polynomials	over ration:	I fields – extension fields – roots of polynomials – si	nlitting	field	s	15				
Torynomiais		in news extension news roots of polynomials s	Jinting	neiu						
Unit:4		Fields (contd)		18	hou	rs				
More about r	oots – sim	ole extension – fixed fields – symmetric rational f	unctior	1s -	norn	nal				
extension - G	alois group	- fundamental theorem of Galois theory.								
Unit:5		Fields (contd) and Selected Topics		17	hou	rs				
Solvability by	radicals: S	olvable group – the commutator subgroup – Solvabil	ity by 1	adica	als -					
Finite fields.										
Unit:6		Contemporary Issues		2	hou	rs				
Expert lecture	es, online se	minars - webinars								
		Total Lecture hours		90	hou	rs				

Te	ext Book(s)		
1	I.N. Herstein, Top	ics in Algebra,	Secnd Edition, John Wiley and Sons, New York, 1975.
	UNIT I:	Chapter 2	: Sections 2.11, 2.12
	UNIT II:	Chapter 2	: Section 2.13
		Chapter 3	: Sections 3.7 - 3.9
	UNIT III:	Chapter 3	: Section 3.10
		Chapter 5	: Sections 5.1,5.3
	UNIT IV:	Chapter 5	: Sections 5.5,5.6
	UNIT V:	Chapter 5	: Section 5.7
		Chapter 7	: Section 7.1
Re	eference Books		
1	Serge Lang, Algebr	a, Thi <mark>rd E</mark> ditior	n, Addison-Wesley, Mass, 1993.
2	John B. Fraleigh, A	First Course in	Abstract Algebra, Addison Wesley, Mass, 1982.
3	M. Artin, Algebra,	Prentice-Hall of	f India, New Delhi, 1991.
4	V. K. Khanna and S Limited, 1993.	<mark>.K. Bh</mark> ambri, A	A Course in Abstract Algebra, Vikas Publishing House Pvt
Rel	ated Online C <mark>onte</mark> n	t <mark>s [MOOC,</mark> SV	VAYAM, NPTEL, Websites etc.]
1	https://nptel.ac.in/co	o <mark>nte</mark> nt/storage2/	/111/106/111106113/MP4/mod08lec44.mp4
2	https://nptel.ac.in/co	o <mark>ntent/storage2</mark> /	/111/106/111106113/MP4/mod08lec45.mp4
3	https://nptel.ac.in/co	ontent/storage2/	/111/106/111106131/MP4/mod08lec39.mp4
4	https://nptel.ac.in/co	ontent/storage2/	/111/106/111106131/MP4/mod08lec42.mp4
	2	447	S S S S S S S S S S S S S S S S S S S
Co	ourse Designed By: I). Saravanan	TAR UNIT OF G
		29	Calmbatare
		SIL	

Mapping with Programme Outcomes										
COs POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Μ	L	L		Μ	S	L	S	Μ	Μ
CO2	S	S	Μ	L	L	S	L	S	Μ	S
CO3	Μ	L	S	Μ	S	Μ	Μ	L	L	S
CO4	Μ	L	S	S	S	Μ	Μ	L	L	S
CO5	L	Μ	Μ	S	Μ	L	S	Μ	S	Μ

Core/Elective/Supportive Core 7 0 0									
Pre-requisiteBasic knowledge in Undergraduate Analysis.Syllabus Version20-21									
Course Objectives:									
The main objectives of this course are to:									
1. Evaluate integral of a function of a real variable in the sense of Riemann Stieltjes integral and									
gain its properties.									
2. Acquire Knowledge and demonstrate understanding the statement and proof of convergence									
theorems and its applications.									
3. Understand the requirement and concept of Lebesgue measure, Measurable functions and									
Lebesgue integral.									
Exported Course Outcomes									
On the successful completion of the course student will be able to:									
1 Apply the Piemenn Stigling integral and bring its properties and rectifishing K3									
Appry the Klemann Stietges integral and oning its properties and recurrable KS curves.									
2 Remembering of sequences and series along with its properties K1									
3 Analyze the concept of linear transformation and find the extreme values of K4 implicit functions.									
4 Understand the fundamental concept of Lebesgue measure. K2									
5 Evaluate the complex integration and the benefits of Lebesgue Integral K5									
K1 - Remember: K2 - Understand: K3 - Apply: K4 - Analyze: K5 - Evaluate: K6 - Create									
Unit:1 Riemann Stiltjes Integral 21 hours									
Definition and Existence of the Integral – properties of the integral – Integration and									
differentiation – Integration of vector valued function – rectifiable curves.									
Coimbatore									
Unit:2 Sequences and Series of Functions 21 hours									
Uniform convergence and continuity - uniform convergence and integration - uniform									
convergence and differentiation – equicontinuous families of functions – The Stone Weierstrass									
theorem.									
Unit:3 Eunctions of Soveral Variables 21 hours									
Linear transformation – contraction principle – Inverse function theorem – Implicit function									
theorem.									
Unit:4Lebesgue Measure20 hours									
Outer measure - Measurable sets and Lebesgue measure - Measurable functions -Littlewood's									
Theorem.									
Unit:5 Lebesgue Integral 20 hours									
The Lebesgue integral of bounded functions over a set of finite measure – integral of a non –									
negative function – General Lebesgue Integral.									

M.Sc. Mathematics 2021-22 onwards Affiliated Colleges -AnnexureNo.5(a)

SC	:AA	DA	TE	D:	23.	06	.20	21
				-			_	_

Ur	nit:6	Contemporary Issues	2 hours						
Co	Convergence in Measure – https://www.youtube.com/watch?v=_wThvhkiH5M								
		Total Lecture hours	105 hours						
Te	ext Book(s)								
1	Principles	of Mathematical Analysis, McGraw Hill, New York, 1976.							
	Ur	it I &II : Chapter 6 & 7.							
	Ur	it III : Chapter 9 (Pages 204 to 227)							
2	2 Real Analysis by H.L. Roydon, Third Edition, Macmillan, New York, 1988.								
	Ur	it IV : Chapter 3 (except Section – 4)							
	Ur	it V :Chapter 4 (Sections 2, 3 & 4 only)							
	0 D								
Re	eference Bo	ooks							
1	R. G. Bart	le, Elements of Real Analysis, 2nd Edition, John Wily and Sons	s, New York, 1976.						
2	Walter Ru	din, Real and Complex Analysis, 3rd Edition, McGraw-Hill, No	ew York, 1986.						
Re	elated Onli	ne Con <mark>tents [MO</mark> OC, SWAYAM, NPTEL, Websites etc.]							
1	https://w	ww.youtube.com/watch?v=DO0Dzz07DNI							
2	https://nj	otel.ac.in/courses/111/101/111101100/							
3	https://w	ww <mark>.youtube.</mark> com/watch?v=Y5yEMXZnzYw							
4	https://yo	outu.be/msIZz8ydzcM	,						
	4								
Co	ourse Desig	ned By: Dr. V Jeyanthi							
		Top Seas Arrist							

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	S	S	Μ	S	M	S	S	SS	S
CO3	S	M	M	L	S	S	S	L	5 L	L
CO3	L	M	S	L	Μ	Μ	Μ	SS	Μ	S
CO4	L	M	S	L	Μ	S	S	S	Μ	Μ
CO5	Μ	L	S	Μ	S	L	Μ	M	L	L
			9951 G				- 31			

*S-Strong; M-Medium; L-Low 55 LILIT COT 2-UMP

Course cod	le	ORDINARY DIFFERENTIAL EQUATIONS	L	Т	Р	C				
Core/Electi	ve/Supportive	Core	7	0	4					
Pre-requi	site	Basic knowledge in differential equations at Undergraduate level.	Syllabus Version 20-21			21				
Course Ob	jectives:									
The main o	bjectives of the	is course are to:								
 Study Under unique Enable interprint 	 Study Solutions of Linear differential equations with constant and variable coefficients. Understand and able to apply various theoretical ideas that underlined in existence and uniqueness theorems, Linear independence and dependence, Wronskian etc., Enables the students to develop the strong background on modeling, formulating, solving and interpreting physical problems. 									
Expected (Course Ou <mark>tco</mark> i	mes:								
On the suc	cessful co <mark>mpl</mark>	etion of the course, student will be able to:								
1 Reca	all the types of constant coeff	linear homogeneous equations of second order equations of second order equations of second order equations is a second order equation of second order equations are second order equations are second order equations are second order equations are second order equations of second order equations are second ore second order	ons		K1					
2 Ana and	yze no <mark>n-homo</mark> annihilator me	geneous ODE using the method of undermined coefficient the same.	cients		K4					
3 Und diffe	3 Understand and Apply the theorems on Initial value problem to ordinary differential equations									
4 Com	4 Comprehend the Euler equations, the Bessel's equation and Regular, Singular K5									
5 Iden	tify the research	ch problem where differential equation can be used to	model		K6					
K1 - Rem	ember; K2 - U	ndestand; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	X6 - C	reate	e					
	49									
		anear Equations with Constant Coefficients	6	20) hou	Irs				
equations -	n - Second o Linear depend	ence and independence - A formula for Wronskian.	i for s	seco	na o	raer				
		alter with the second								
Unit.2	Linea	r Equations with Constant Coefficients (Contd)		21	hor	irs				
The Non- 1		juations of order two-homogenous and Non - homog	enous	eau	ation	s of				
order n -	Initial value	problems for n th order equations- Annihilator met	nod to) so	lve r	ion-				
Homogeno	us equation.	-								
Unit:3	Lir	ear Equations with Variable Coefficients		21	hou	irs				
Initial val	ue problem ·	- Existence and uniqueness theorem - The Wro	nskiar	n an	d lii	near				
independen	ce - Reductio	n of the order of a homogenous equation - The	non-	Hon	noger	ous				
equation - Homogenous equations with analytic coefficients - The Legendre equations.										
I Init.1	Lina	ar Equations with Dogular Singular Daints		20	hor	Ire				
The Fuler	Lille	cond order equations with regular singular points	Tycont	40 tions		113 es -				
The Bessel	The Euler equations - Second order equations with regular singular points - Exceptional cases - The Bessel equation – The Bessel equation contd.									

r			
U	nit:5	Existence and Uniqueness of Solutions to First Order	21 hours
		Equations	
Equ	uations with	variable separated - Exact equations - The method of succes	sive approximation -
The	e Lipschitz	Condition - Convergence of the successive approximation - N	on-local existence of
solı	itions - Apr	proximations and uniqueness of solutions.	
U	nit:6	Contemporary Issues	2 hours
Ex	pert lecture	es. online seminars - webinars	
	- <u>r</u>		
		Total Lecture hours	105 hours
Te	ext Book(s)		
1	Earl A. C	oddington, An Introduction to Ordinary Differential Equation	ons, Prentice-Hall of
	India Priva	ate Limited, New Delhi 2008.	
		UNIT I: Chapter 2 : Sections $2.1 - 2.5$.	
		UNIT II: Chapter 2 : Sections 2.6 – 2.8, 2.10,2.1	11.
		UNIT III: Chapter 3 : Sections 3.1 – 3.8	
		UNIT IV: Chapter 4 : Sections 4.1 – 4.4, 4.6 – 4.	.8
		UNIT V: Chapter 5 : Sections 5.1 – 5.8	
Re	eference Bo	ooks	
1	Williams	E. Boyce and Richard C. Diprima, Elementary Differential Equ	ations and
	Boundary	Value Problems, 10th edition, John Wiley and Sons, New York	<mark>x</mark> 2012.
2	S. G. Deo	and V. Raghavendra, Ordinary Differential Equations and Stab	ility Theory,
	Tata McC	braw-Hill, New Delhi 1980.	
3	George F.	Simmons, Differential Equations with Application and Historic	cal Notes, Tata
	McGraw I	Hill, New Delhi 1974.	
Re	elated Onli	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	9
1	https://np	otel.ac.in/courses/111/104/111104031/#	3
2	https://np	otel.ac.in/courses/122/107/122107037/	
		W WAR UN	
Co	ourse Desig	ned By: Dr. V. Jeyanthi Colmbetare	

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	Μ	M	S	L	S	Μ	S	L
CO3	Μ	S	S	Μ	S	S	S	S	S	Μ
CO3	L	Μ	S	S	S	S	S	S	S	S
CO4	Μ	S	L	Μ	S	Μ	S	S	L	S
CO5	L	Μ	S	S	S	Μ	S	S	L	Μ

Course code		NUMERICAL ANALYSIS	L	Т	Р	С			
Core/Elective/	Supportive	Core	6	0	0	4			
D		Basic Knowledge in numerical methods at	Sylla	bus					
Pre-requisit	e	Undergraduate level.	Versi	on	20-2	21			
Course Obje	ctives:								
The main obje	ectives of the	s course are to:							
1. To make	the student	s understand solving Algebraic and Transcendental eq	uation	s.					
2. To know	about how	and when to use various interpolation function finding	g the v	ariou	IS				
numerica	l differentia	tion and integration formulae and using them to solve	proble	ems.					
3. To under	3. To understand the methods of finding solution to the differential equations of various orders.								
Expected Cor	arse Outcon	nes:							
On the succe	ssful comp <mark>l</mark>	etion of the course, student will be able to:							
1 Solve p	problems in	numerical differentiation and integration			K	3			
2 Solve s	system of eq	uations using various methods.			K	3			
3 Apply	various met	hods to find numerical solution of first and second ord	er		K	3			
ordinar	v differentia	d equations.	••						
4 Explain	the various	methods for solving Boundary Value Problems and			K	2			
Charac	Characteristic Value Problems								
5 Unders	5 Understand the Explicit method and the Crank Nicolson method for solving K2								
partial differential equations.									
K1 - Remem	ber; <mark>K2 - U</mark>	ndestand; K3 - Apply; K4 - Analyze; K5 - Evaluate; H	K6 - C	reate	1				
					1				
Unit:1	S	olution of Nonlinear Equations, Numerical		18	hou	rs			
	5	Differentiation and Integration	9						
Solution of	Nonlinear	Equations: Newton's method – Convergence of Ne	wton'	s me	thod	_			
Bairstow"s N	Aethod for q	uadratic factors.							
Numerical I	Differentiati	on and Integration: Derivatives from Differences	table	es –	High	ler			
order derivat	ives – Div	ided difference, Central-Difference formulas- Comp	osite	form	ula	of			
Trapezoidal ru	ıle – Rombe	rg integration – Simpson's rules.							
		ுத்தப்பாரை உயா	-						
Unit:2		Solution of System of Equations		17	hou	rs			
The Elimina	tion method	I - Gauss and Gauss Jordan methods - LU Decomp	ositio	n me	thod	_			
Matrix inver	sion by Gau	uss-Jordan method – Methods of Iteration – Jacobi	and G	auss	Seic	lal			
Iteration – R	elaxation m	ethod – Systems of Nonlinear equations.							
Unit:3	Sol	ution of Ordinary Differential Equations		17	hou	rs			
Taylor serie	s method –	Euler and Modified Euler methods – Runge-kutta me	thods	$-\mathbf{M}$	ultist	ep			
methods – M	ilne's meth	od – Adams Moulton method.							
TIm:4- A									
Unit:4	Bounda	ary value Problems and Unaracteristic Value		19	nou	rs			
Problems									
The snooting method – solution through a set of equations – Derivative boundary conditions –									
Characteristi	c value prot	piems – Eigen values of a matrix by Iteration – The po	wer m	etnoc	1.				

Unit:5	Numerical Solution of Partial Differential Equations	18 hours					
Representatio	on as a difference equation – Laplace's equation on a rectangul	ar region – Iterative					
methods for	Laplace equation – The Poisson equation – Derivative bou	ndary conditions –					
Solving the equation for time-dependent heat flow (i) The Explicit method (ii) The Crank							
Nicolson method – solving the wave equation by Finite Differences.							
	· · ·						
Unit:6	Contemporary Issues	2 hours					
Expert lectur							
	Total Lecture hours	90 hours					
Text Book(s))						
1 Curtis F. C	Gerald, Patrick O. Wheatley, Applied Numerical Analysis, Fifth Ec	lition, Addison					
Wesley, (1998).							
Reference B	ooks						
1 S. C. Cha	pra and P. C. Raymond: Numerical Methods for Engineers, Tata	a McGraw Hill,					
New Dell	ni, 2000.						
2 S.S. Sastr	y: Introductory methods of Numerical Analysis, Prentice Hall o	f India, New Delhi,					
1998.							
3 P. Kandas	samy et al., Numerical Methods, S.Chand & Co.Ltd., New Delh	<mark>i</mark> , 2003.					
I							
Related Onli	ine Contents [MOOC, SWAYAM, NPTEL, Websites etc.]						
1 https://n	ptel.ac.in/courses/111/107/111107105/						
2 https://fr	eevideolectures.com/course/3504/numerical-methods-of-ordina	ry-and-partial/1					
3 https://w	ww.classcentral.com/course/swayam-numerical-methods-for-er	ngineers-14213					
	e and a						
Course Desig	med By: Dr. N. Mala						

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	L	S	S	M	L	S	Μ	Μ
CO3	S	Μ		S	S	Μ	L	S	Μ	Μ
CO3	S	Μ	L d	5.S.	S	M	L	S	Μ	Μ
CO4	S	S	S	S	Μ	S	S	Μ	L	L
CO5	S	S	S	S	M	S	S	Μ	L	L

6

1

*S-Strong; M-Medium; L-Low

Oh

Course code		LINEAR ALGEBRA	L	Т	Р	С			
Core/Elective/S	Supportive	Core	6	0	0	4			
Pre-requisite	•	A good familiarity with Calculus and Modern Algebra.	Sylla Versi	bus on	20-2	:1			
Course Objec	tives:								
The main objectives of this course are to:									
1. Develop a	1. Develop a strong foundation in linear algebra that provide a basic for advanced studies.								
2. Study of Linear Transformations, Algebra of Polynomials, Invariant space and their properties									
3. Give part	icular atten	tion to canonical forms of linear transformations, c	liagon	aliza	tions	of			
linear tran	sformation	s, matrices and determinants.							
Expected Cou	rse Outcor	nes:							
On the succes		etion of the course, student will be able to:		1	17	2			
I Underst matrices	and the bas s of linear t	ic concepts of Linear transformations, characteristic ro	ots ar	nd	K	3			
2 Explain factoriz	2 Explain about the algebra of polynomials, polynomial ideals and prime K4 factorization of a polynomial								
3 Understand the basic concepts of determinants and its additional properties. K3									
4 Recognize the concepts of Invariant subspaces and diagonalization process. K2									
5 Analyze	e canonical	Form, Jordan Form and Rational canonical Form.			K	4			
K1 - Rememb	oer; K2 - U	nd <mark>es</mark> tand; <mark>K3 - Apply; K4 - Analyze; K5</mark> - Evaluate; k	X6 - C	reate					
		and the second sec	<u>.</u>						
Unit:1	2	Linear Transformations		18	hou	rs			
Linear trans	formations	– Isomorphism of vector spaces – Represent	ations	of	line	ar			
transformatio	ns by matri	ces – Linear functionals.							
Linit.?		Algebra of Polynomials		17	hou	ra			
The algebra	of polynom	nials –Polynomial ideals - The prime factorization of	fan		mial	-			
Determinant f	functions.		nup	orym	/iiiiu	•			
		EDUCATE TO ELEVATE							
Unit:3		Determinants		18	hou	rs			
Permutations	and the un	niqueness of determinants - Classical adjoint of a (squar	e) m	atrix	_			
Inverse of a	n invertible	e matrix using determinants - Characteristic value	s – A	Annił	ilati	ng			
polynomials.									
T T 1 / 4				10					
Unit:4		Diagonalization	tion	18	hou ot ar	rs			
decompositio	spaces – Sil ns – Invaria	munaneous mangulations – Simultaneous diagonaliza	uon –	Dire	ci-st	.111			
	decompositions – invariant direct sums – Primary decomposition theorem.								
Unit:5		The Rational and Jordan Forms		17	hou	rs			
Cyclic subspa	aces – Cyc	lic decompositions theorem (Statement only) - Gene	eralize	d Ca	yley	_			
Hamilton the	Hamilton theorem - Rational forms – Jordan forms.								

SCAADATED:25:06:2021							
Unit:6Contemporary Issues2 hours							
Inner Product Spaces – https://www.youtube.com/watch?v=ERfbtPBEYVA							
Total Lecture hours 90 hours							
Text Book(s)							
1 Kenneth M Hoffman and Ray Kunze, Linear Algebra, Second Edition, Prentice-Hall of Ind							
Pvt. Ltd, New Delhi, 2013.							
UNIT I: Chapter 3 : Sections 3.1-3.5							
UNIT II: Chapter 4 : Sections 4.1, 4.2, 4.4, 4.5							
Chapter 5 : Sections 5.1, 5.2							
UNIT III: Chapter 5 : Sections 5.3, 5.4							
Chapter 6 : Sections 6.1-6.3							
UNIT IV: Chapter 6 : Sections 6.4 - 6.8							
UNIT V: Chapter 7 : Sections 7.1 – 7.3							
Reference Books							
1 M. Artin, Algebra, Prentice-Hall of India Pvt. Ltd., 2005.							
2 S. H. Friedberg, A. J. Insel and L. E. Spence, Linear Algebra, Fourth Edition, Prentice-Hall							
India Pvt. Ltd., 2009.							
3 I. N. Herstein, Topics in Algebra, Second Edition, Wiley Eastern Ltd, New Delhi, 2013.							
45							
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]							
1 https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces							
2 https://nptel.ac.in/courses/111/106/111106051/							
Course Designed By: Prof. D. Saravanan							

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	Μ	L	Μ	S	S	S	Μ	Μ
CO2	Μ	S	S	M	Lato	S	S	S	Μ	Μ
CO3	S	S	M	L	Μ	S	S	S	Μ	Μ
CO4	L	Μ	L 🖘	5.S	Μ	o SLIN	М	Μ	L	L
CO5	Μ	S	S	M	L	S	S	S	Μ	Μ
*S-Stro	ng M_N	Medium.	L-Low	- OGAL	EIUE	13 La			-	-

19

Course code COMPLEX ANALYSIS L T H									
Core/Elective/S	Supportive	Core	7	0	0	4			
Pre-requisite	6	Basic knowledge in complex analysis at Undergraduate level.	Sylla Versi	bus on	20-2	21			
Course Object	tives:								
The main obje	ctives of thi	s course are to:							
 Define an Enable th study. Study Ca Cauchy's 	 Define and recognize the basic properties of the complex numbers Enable the students to the differentiability of complex functions and the results related on the study. Study Cauchy's integral formula, local properties of analytic functions, general form of Cauchy's theorem and evaluation of definite integral. 								
Expected Cou	irse Outcor	nes:							
On the succe	ssful comple	etion of the course, student will be able to:							
1 Rememand und	1 Remembering the concept of Analytic function and as a mapping on the plane K1 and understand Mobius Transformation.								
2 Unders poles,	2 Understand Cauchy's Integral Formula on open sets on the plane and know about K2 poles residues and singularities								
3 Apply 1 definite	3 Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals. K3 % K4								
4 Analyze and represent the sum function of a power series as an Analytic K5 Function									
5 Study a applica	5 Study and Understand periodic function, Weierstrass @ function and its K6								
K1 - Remem	ber; K2 - U	nderstand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (Creat	e				
		The second of the second se		Â					
Unit:1	9 Intr	oduction to the Concept of Analytic Function, Conformality, Linear Transformations		20 h	ours				
Introduction	to the con	cept of analytic function: Limits and continuity – An	alytic	func	tions	5 —			
Polynomials	– Rational f	unctions. Colmbatare							
Conformalit	y: Arcs and	closed curves - Analytic functions in regions - Conf	ormal	Map	oping	ç —			
Length and A	rea.	& Bitsering on Minger							
Linear Tran	sformation	s: The Linear group – The Cross ratio – Elementary R	ieman	n Su	rface	s.			
	~	-DUCATE TO ELEVATE	1						
Unit:2	Comp	lex Integration and Cauchy's Integral Formula	<u> </u>	20) hou	rs			
Complex Int	tegration: 1	Line Integrals Rectifiable Arcs – Line Integrals as Fu	nction	is of	Arcs	—			
Cauchy's the	orem for a r	ectangle - Cauchy's theorem in a disk.	r	F1 1		1			
formula II	tegral form	tives Removable singularities. Taylor's Theorem	ve – .	ine i	ntegi	rai			
The Local M	gner deriva	Maximum principle scheins and cyclos	Leros a	and I	Poles	_			
The Local Mapping- The Maximum principle – chains and cycles.									
Unit:3	The C	alculus of Residues and Harmonic Functions		21	hou	rs			
The Calculu	s of Residu	ies: The Residue theorem – The Argument principle	e = Ev	valua	tion	of			
definite integ	rals.	Ind Indonent Principi				~*			
Harmonic functions: The Definitions and basic Properties – Mean value property – Poisson's									
Formula.									

Ur	nit:4	Series and Product Developments, Partial fractions and Factorization	21 hours					
S.	miag and D	raduat Davidanmenta Weigestress Theorem The Taylor Se	mian The Loumant					
Se	ries and P	roduct Developments: weierstrass Theorem – The Taylor Se.	ries – The Laurent					
Se	ries.							
Pa	rtial fracti	ons and Factorization: Partial Fractions – Infinite Products – C	anonical Products.					
		T						
Ur	nit:5	Elliptic Functions	21 hours					
Si	mply Perio	dic Functions: Representation by Exponentials-The Fourier De	velopment -					
Fu	nctions of l	Finite Order.						
Do	ubly Perio	dic Functions: The Period Module-Unimodular Transformation	is - The Canonical					
Bas	sis-General	Properties of Elliptic Functions.						
We	eierstrass T	Theory: The Weierstrass \wp -function.						
Ur	nit:6	Contemporary Issues	2 hours					
Ex	pert lecture	s, online seminars - webinars						
	•							
		Total Lecture hours	105 hours					
Te	ext Book(s)							
1	1 L. V. Ahlfors, Complex Analysis, McGraw Hill, New York, 1979							
	UNIT I: Chapter 2 : Sections $1, 1 - 1, 4$							
		Chapter 3 : Sections $2.1 - 2.4, 3.1, 3.2$ and 3.4						
	UN	VIT II: Chapter 4 : Sections $1.1 - 1.5$, $2.1 - 2.3$, $3.1 - 1.5$	3.4 and 4.1					
	UN	Sections $51-53$, $61-63$						
		$\frac{11}{11} = \frac{13}{21} = 13$						
		$\frac{11}{V} = \frac{13}{Chapter 7} = \frac{1}{2} \frac{11}{2} \frac{11}{2} \frac{13}{2}$						
	01							
Re	ference Bo	noks						
1	S. Ponnu	isamy and H. Silverman, A Complex Variable with application	ations, Birkhauser,					
	Boston, 2	2006.	5					
2	Karunaka	aran V, Complex Analysis, Narosa Publishing House Pvt. Ltd	d, Second Edition,					
	New Del	hi, 2006.						
3	Roopkun	har R, Complex Analysis, Dorling Kinderley Pvt. Ltd, New Del	hi, 2015.					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
Re	elated Onli	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]						
1	https://np	otel.ac.in/courses/111/103/111103070/						
2	https://n	otel.ac.in/courses/111/106/111106084/						
3	3 https://youtu.be/sJcpfmF50H0							
Co	ourse Desig	ned By: Dr. V. Jeyanthi						

Mapping with Programme Outcomes										
COs POs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10
CO1	S	S	Μ	L	L	Μ	Μ	Μ	L	Μ
CO2	Μ	S	Μ	L	Μ	Μ	Μ	Μ	L	Μ
CO3	Μ	S	Μ	S	Μ	Μ	S	S	Μ	Μ
CO4	Μ	S	S	S	Μ	S	S	Μ	L	S
CO5	S	Μ	S	S	Μ	S	S	Μ	Μ	S

Course code		PARTIAL DIFFERENTIAL EQUATIONS	L	Т	P	С					
Core/Elective/S	Supportive	Core	7	0	0	4					
Pro-requisite		Knowledge in Undergraduate differential	Sylla	bus	20-2	)1					
		equations.	Versi	on	20-2	/1					
Course Objec	tives:										
The main obje	ctives of thi	s course are to:									
1. Introduce di	fferent meth	nods to solve partial differential equation.									
2. Acquire kno	wledge in c	lassification of partial differential equations and the m	ethod	s to s	solve	•					
3. Enables the students to find the solution of Partial Differential Equation of practical application											
like in Enginee	ering, Physic	cs, etc.,									
Expected Course Outcomes:											
On the succes	stul comple	etion of the course, student will be able to:									
1 Understand and remember the physical situations with real world problems to K1											
construct mathematical models using partial differential equations and study the &K											
2 Analyze the type of partial differential equations and different methods to solve K4											
3 Evaluate Laplace equation and analyze its applications											
4 Apply variable separable method to solve Laplace and Diffusion equation K3											
5 Finding	the appropri	riate method to solve the partial differential equations			K	6					
K1 - Rememb	per; $K2 - U$	nderstand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (	Creat	e						
Unit:1	Par Par	tial Differential Equations of the First Order	8	21	hou	rs					
Partial Differ	rential Equ	<mark>ations – Origins of First Order Different</mark> ial Equat	ions -	- Ca	uchy	/'s					
Problem for	first order	equations – Linear Equations of the first order –	Nonli	near	part	ial					
differential e	quations of	the first order – Cauchy's method of characterist	ics –	Com	patib	ole					
system of Firs	st order Equ	ations – Solutions satisfying Given Condition, Jacobi	s met	hod.							
Unit:2	Parti	al Differential Equations of the Second Order		21	hou	rs					
The Origin o	f Second C	Order Equations – Linear partial Differential Equation	ons wi	ith c	onsta	int					
coefficients -	- Equations	with variable coefficients - Separation of variables	– The	met	hod	of					
Integral Trans	sforms – No	on – linear equations of the second order.									
Unit:3		Laplace's Equation		<u>21</u>	hou	rs					
Elementary s	solutions of	Laplace equation – Families of Equipotential Surf	aces -	- Bo	unda	ry					
Variables – I	lis – Separa Problems, w	ith Avial Symmetry – The Theory of Green's Fun	s - st	spara for I	uon anla	01					
variables – Problems with Axial Symmetry – The Theory of Green's Function for Laplace											
Unit:4		The Wave Equation		21	hou	rs					
The Occurre	The Occurrence of the wave equation in Physics – Elementary Solutions of the One –										
dimensional V	Wave equat	ions - Vibrating membrane, Application of the calcul	us of	varia	tions	<b>,</b> —					
Three dimens	ional proble	em.									

Unit:5	The Diffusion Equation	19 hours					
Elementary S	Solutions of the Diffusion Equation – Separation of variables –	The use of Integral					
Transforms -	- The use of Green's functions.						
Unit:6	Contemporary Issues	2 hours					
Expert lectur	es, online seminars - webinars						
<b>1</b>							
	Total Lecture hours	105 hours					
Text Book(s	)						
1 Ian Snede	lon, Elements of Partial Differential Equations, McGraw Hill In	ternational Book					
Company	, New Delhi, 1983.						
Reference Books							
1 M. D. R.	aisinghania, Advanced Differential Equations, S. Chand and	Company Ltd., New					
Delhi, 20		1					
2 K. Sanka of India, 1	ra Rao, Introduction to Partial Differential Equations, Second e	edition, Prentice-Hall					
3 J. N. Sha	ma and K. Singh, Partial Differential Equations for Engineers a	nd Scientists, Narosa					
Publishin	g House, 2001.	,					
<b>I</b>							
Related Onl	ine Contents [MOOC, SWAYAM, NPTEL, Websites etc.]						
1 https://w	/ww <mark>.youtube.</mark> com/watch?v=bPPWp65qpIA						
2 When d	o PDE NOT have solutions?						
https://w	/ww.youtube.com/watch?v=BmTFbUAOeec&list=PLGCj8f6sg	swntUil8yzohR_qa					
zOfYZO	Cg_&index=49						
Course Designed By: Dr. V. Jeyanthi							
		2					

Mapping with Programme Outcomes										
Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	PO10
CO1	Μ	M	Μ	L	Μ	M	Μ	S	L	Μ
CO2	Μ	M	S	Μ	S	S	S	S	Μ	L
CO3	L	S	M	S	S	S	Μ	S	L	L
<b>CO4</b>	Μ	S	M	SSU	I Son	2511	S	S	L	L
CO5	Μ	S	M	EDSICA	S	FISTE	Μ	S	Μ	Μ
*C C+	on av M	Madium	LLow							

Course code		MECHANICS	L	Т	Р	С					
Core/Elective/S	Supportive	Core	6	0	0	4					
Pre-requisite	•	To know the basic concepts of Statics and	Sylla	bus	20-2	21					
i i e requisite	-	Dynamics at Undergraduate level.	Versi	on	20 2						
Course Objec	tives:										
The main object	ctives of thi	s course are to:									
1. underst	and the con	cepts of generalized coordinates, virtual work, Lagrar	ige's e	quat	ions	and					
Hamilton's Pri	nciple. To c	liscuss the applications of the above concepts with sui	table e	exam	ples.						
2. Proficie	ent in deriva	ation and application of Hamilton-Jacobi equations									
3. gain kn	owledge ab	out canonical transformations, Lagrange and Poisson	bracke	ets.							
Free estad Correct Oute areas											
On the succes	Expected Course Outcomes:										
1 understand the basis sequents of the mechanical system comparison accordinates.											
1 understat	nd the basic	concepts of the mechanical system, generalized coord	inates	,	K	.1					
2 solve and	l analyze th	a Lagrange's equations and integrals of motion with e	vomnl	00	K	3					
2 solve and analyze the Lagrange's equations and integrals of motion with examples.											
to analyze those principles to the problems arising in practical situations											
4 understar	e mose prin	lop the Hamilton's Principal function and Hamilton I	acobi	N	K	5					
equation		top the Hamilton's Thirdpar function and Hamilton's									
5 Get fami	liar with car	ponical transformations, conditions of canonicity of a	-		K	6					
transformation in terms of Lagrange and Poisson brackets.											
K1 - Rememb	oer; <b>K2</b> - U	ndestand; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	<b>X6 – C</b>	reate	2						
		2 Contraction of the	9	Â							
Unit:1	2	Introductory Concepts		18	hou	rs					
Mechanical s	ystem – G	eneralized Coordinates – Constraints – Virtual Wo	ork –	Ener	gy a	nd					
Momentum.	2	AR UN									
		Coimbatore									
Unit:2		Lagrange's Equations		18	hou	rs					
Derivations o	f Lagrange'	s Equations: Derivations of Lagrange's Equations – E	xamp	les –							
Integrals of N	lotion.	SOUCATE TO THE EVALE									
I		Unite in Englishing		17	1						
Unit:5	ringinla L	Inmitton's Equations		1/	nou	.rs					
		lamiton's Equations.									
∐nit•4		Hamilton - Jacobi Theory		18	hou	rc					
Hamilton's Pi	rincinle fun	ction – Hamilton – Jacobi Equation – Separability		10	nou	15					
		enon manimon sacos Equation Separaomy.									
Unit:5		Canonical Transformations		17	hou	rs					
Differential forms and Generating Functions – Lagrange and Poisson Brackets											
			-								
Unit:6		Contemporary Issues		2	2 hou	rs					
Infinitesimal	Canonical 7	ransformation – https://www.youtube.com/watch?v=	jSt1RS	54Qt	Ek						
		Total Lecture hours	-	90	hou	rs					

Te	xt Book(s)							
1	D. T. Gree	nwood, Classica	al Dynamics, Dover Publications, New York, 1997.					
	Unit-I:	Chapter 1:	Sections $1.1 - 1.5$					
	Unit-II:	Chapter 2:	Sections $2.1 - 2.3$					
	Unit-III:	Chapter 4:	Sections $4.1 - 4.2$					
	Unit-IV:	Chapter 5:	Sections $5.1 - 5.3$					
	Unit-V:	Chapter 6:	Sections 6.1, 6.3					
Re	ference Boo	ks						
1	F. Gantmacher, Lectures in Analytic Mechanics, MIR Publishers, Moscow, 1975.							
2	I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall of India, New Delhi,							
	1963.							
3	S. L. Lone	y, An Elementa	ry Treat <mark>ise on Statics, K</mark> alyani Publishers, New Delhi, 1979.					
			Constanting the second se					
Re	lated Online	e Contents [MO	OOC, SWAYAM, NPTEL, Websites etc.]					
1	http://math	.ucr.e <mark>du/home/</mark>	baez/classical/texfiles/2005/book/classical.pdf.					
2	https://npte	el.ac.i <mark>n/courses/</mark>	115/103/115103115/					
4	https://ww	w.youtube.com	/watch?v=G6OX1NpToaw					
		S						
Co	Course Designed By: Prof. D. Saravanan							
	55							

Mappi	Mapping with Programme Outcomes										
Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	
CO1	S	Μ	S	М	S	Μ	S	L	S	L	
CO2	Μ	S	Μ	S	S	L	Μ	S	L	Μ	
CO3	S	S	M	S	S	L	S	S	Μ	L	
<b>CO4</b>	S	S	Μ	S	S	M	Μ	S		S	
CO5	S O	S	Μ	S	S	Μ	M	S	L	S	
*S-Stro	ong; M-N	Aedium;	L-Low	LHIA 1555LIN	RU oimbato		த்திட	Califor			



Cou	rse code		L	Т	Р	С				
Core	/Elective/S	upportive	Core	7	0	0	4			
Pre	-requisite	<b>)</b>	Know the basic concepts of Real Analysis at Undergraduate level.	Sylla Versi	bus on	20-2	21			
Cou	rse Object	tives:								
The	main objec	ctives of thi	s course are to:							
1.	To introdu homeomo	uce the co rphism ,cor	oncepts of point-set topology with emphasis on connectedness, compactness, countability and separation	ntinuo axion	us fu 1s.	nctio	ons,			
Exp	Expected Course Outcomes:									
On	the succes	stul comple	etion of the course, student will be able to:			17	1			
1	Acquire	knowledge	about various types of topological spaces and their pi	operti	es	K	.1			
2	Discuss	connected	spaces, the components of a space			K	2			
3	Apply th	he propertie	s and derive the proofs of theorems.			K	3			
4	Constru	ct a variety	of examples and counter examples in topology		6	K	3			
5	Underst compac	and the pro	perties of the compact spaces and analyse the differen	t types	sof	K	.4			
K1	- Rememb	ber; <mark>K2</mark> - U1	ndestand; K3 - Apply; K4 - Analyze; K5 - Evaluate; H	<b>X6</b> – C	reate	;				
		୍ୟର୍ଶ								
Uni	it:1	To	ppological Spaces and Continuous functions		21	hou	rs			
Тур	bes of Top	ological Sp	aces and Examples - Basics for a topology - The ord	ler top	olog	<b>у</b> -Т	he			
fun	ctions	ogy on A x	1 - The subspace topology - Closed sets and finitis po	onnes -	Com	muo	us			
Tun	ctions.		e and a	~						
Uni	it:2	Topolo	ogical Spaces and Continuous functions (Contd) and Connectedness	9	21	hou	rs			
The	Product	Topology	- The metric topology - Sequence lemma- Unifor	n lim	it th	eorei	n-			
Cor	nnected s	paces - C	connected subspaces of the real line - Compo	nents	and	Loc	al			
con	nectedness	s	Colimbatore Co							
Uni	it:3		Compactness		20	hou	rs			
Co	mpact spa	ices - Com	pact subspaces of the real line -Uniform continuity	theor	em -	Lin	nit			
Poi	nt Compac	ctness – con	nplete metric spaces -compactness in metric spaces.							
Uni	it:4		Countability and Separation Axioms		20	hou	rs			
Firs	st and Seco	ond countab	le spaces - Lindeloff and Separable spaces - Countab	ility a	xiom	s - T	he			
sep	aration axi	oms - Norn	nal spaces - The Uryshon's lemma.	2						
		~								
Uni	Unit:5 Countability and Separation Axioms and Tychonoff 21 hours Theorem									
The	Urysohn	Metrizatio	n Theorem - Tietze Extension Theorem - The Tycl	nonoff	theo	orem	_			
Sto	Stone Cech compactifications.									
Uni	Unit:6 Contemporary Issues 2 hou									
Exp	ert lecture	es, online se	minars - webinars							
			Total Lecture hours		105	hou	rs			

Text Book(s)
1 James R. Munkres, Topology, Second Edition, Prentice-Hall of India, New Delhi, 2006.
Reference Books
1 G. F. Simmons, Introduction to Topology and Modern Analysis, Tata McGraw-Hill Edition
New Delhi, 2004.
2 Fred H. Croom, Principles of Topology, Cengage India Pvt Ltd, New Delhi, 2009.
3 Seymour Lipschutz, Schaum's Outline of Theory and Problems of General Topology
McGraw-Hill Edition, New Delhi, 2006.
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1 https://nptel.ac.in/content/storage2/courses/111106054/Topology%20complete%20course.p
df
2 https://www.youtube.com/watch?v=Oe3Qjk3t0go&lc=UghijV07WCAwpHgCoAEC
3 https://www.youtube.com/watch?v=20MPmrHE02M

Course Designed By: Dr. C. Janaki

Mappi	Mapping with Programme Outcomes									
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10
CO1	L	Μ	S	L	Μ	Μ	S	$\mathbf{L}$	Μ	S
CO2	S	Μ	Μ	L	L	S	S	Μ	S	Μ
CO3	S	Μ	S	L	Μ	S	S	S	Μ	S
<b>CO4</b>	S	S	S	Μ	L	S	S	S	Μ	S
<b>CO5</b>	S	Μ	S	M	M	S	S	S	Μ	S

துத்து இந்தப்பாரை 2 வை ings gil Colomo

Course code		FLUID DYNAMICS	L	Т	Р	С				
Core/Elective/S	Supportive	Core	7	0	0	4				
Pre-requisite	e	Knowledge in Kinematics and Differential	Sylla	bus	20-2	21				
Course Objec	tives	equations at Undergraduate level.	Versi	on						
The main object	ctives of thi	s course are to:								
1 able to kno	w the funds	mental concepts of fluids and its properties								
2. develop the	e problems	solving skill in fluid dynamics.								
3. know the r	eal-life appl	ications of fluid dynamics.								
		·								
Expected Course Outcomes:										
On the successful completion of the course, student will be able to:										
1 Recall t	the basic con	ncepts of velocity, density and curvilinear co-ordinates	5.		K	.1				
2 Underst	tand the con	cepts and equations of fluid dynamics			K	.2				
3 Analyz	e and under	stand the concepts of the force experienced by a two-			K	2&				
dimensional fixed body in a steady irrotational flow.						4				
4 Analyze the approximate solutions of the Navier – Stokes equation.						4& 5				
5 Analyz	e and apply	the appropriate method to solve integral equation of h	ounda	rv	K	3&				
layer, B	Blasi <mark>us equa</mark>	tion and its series solution.	oundu	L y	K	3 <b>a</b>				
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create										
Unit:1 Bernoulli's Equation and Equations of Motion 20 hours										
Introductory	Notions – <mark>V</mark>	elocity – Stream Lines and Path Lines – Stream Tub	es and	l Fila	imen	ts –				
Fluid Body –	Density – I	Pressure. Differentiation with respect to the time – Equ	uation	of co	ontin	uity				
- Boundary	conditions	- Kinematical and physical - Rate of change of in	near 1	nom	entur	n –				
Equation of I				5						
Unit:2	<b>\</b> 2	Equations of Motion (Contd)		2	0 ho	ours				
Euler's mom	entum The	orem – Conservative forces – Bernoulli's theorem	n stea	dy n	notio	n –				
energy equat	ion for invis	scid fluid – circulation – Kelvin's theorem – vortex n	notion	– He	elmh	oltz				
equation.		ுத்தப்பாரை உயா								
Unit.3		Two Dimensional Motion		2	1 ho	line				
Two Dimer	l isional Mo	tion – Two Dimensional Functions – Complex	Poten		- h	asic				
singularities	– source – s	sink – Vortex – doublet – Circle theorem. Flow past	a circ	ular	cylir	ıder				
with circulati	on – Blasius	s Theorem – Lift force. (Magnus effect)			2					
	T									
Unit:4		Dynamics of Real Fluids		2	21 ho	urs				
Viscous flow	's – Navier-	Stokes equations – Vorticity and circulation in a viso w cylinder under pressure – Steady Couette flow be	cous II	uia -	- Ste nder	ady				
relative motio	on – Steady	flow between parallel planes	tween	Cyn	nuer	5 111				
relative motion bleady now between paranet planes.										
Unit:5	Unit:5The Laminar Boundary Layer in Incompressible Flow21 hours									
Boundary Layer concept – Boundary Layer equations – Displacement thickness, Momentum										
thickness – K	thickness – Kinetic energy thickness – integral equation of boundary layer – flow parallel to semi									
infinite flat p	iate – Blasii	is equation and its solution in series.								

#### M.Sc. Mathematics 2021-22 onwards Affiliated Colleges -AnnexureNo.5(a)

SCAADATED:23.06.2021

Uı	nit:6	Contemporary Issues	2 hours						
Ex	pert lecture	s, online seminars - webinars							
		Total Lecture hours	105 hours						
Те	ext Book(s)								
1	Units I an	d II: L. M. Milne Thomson, Theoretical Hydro Dynamics, Mac	cmillan Company,						
	5th Edition (1968).								
	Chapter I	: Sections $1.0 - 1.3., 3.10 - 3.41$ (omit $3.32$ )							
	Chapter I	II : Sections 3.42 – 3.53 (omit 3.44)							
2	2 Units III, IV and V: Modern Fluid Dynamics Volume I, N. Curle and H. J. Davies, D. Van								
	Nostrand Company Limited., London, 1968.								
	Chapter III : Sections $3.1 - 3.7.5$ (omit $3.3.4, 3.4, 3.5.2, 3.6$ )								
	Chapter V	: Sections 5.2.1 5.3.3							
	Chapter V	I : Sections 6.1 – 6.3.1 (omit 6.2.2., 6.2.5)							
	_	6010- 0- 000							
Re	eference Bo	oks							
1	F. Chorlt	on, Text <mark>book of Fluid Dynamics, CBS Publishers, New De</mark> lhi, 2	2004.						
2	A. J. Chor	in and A. Marsden, A Mathematical Introduction to Fluid Dyna	mics, Springer-						
	Verlag, N	lew York, 1993.							
Re	elated Onlin	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]							
1	https://np	tel.ac.in/courses/112/106/112106200/							
2	https://np	tel.ac.in/courses/112/105/112105171/							
Co	ourse Design	ned By: Dr. V. Jeyanthi							
		a martin							

Mapping with Programme Outcomes											
COs POs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	<b>PO8</b>	<b>PO9</b>	PO10	
CO1	Μ	S	Μ	Μ	Μ	L	L	M	Μ	S	
CO2	Μ	S	Μ	Μ	S	Μ	S	Μ	Μ	S	
CO3	EQ.	Μ	Μ	Μ	S	Μ	S	S	Μ	S	
CO4	M	M	S	S	Μ	Μ	S	S	Μ	S	
CO5	L	M	S	Μ	Μ	M	S	S	Μ	S	

*S-Strong; M-Medium; L-Low 29511116015 2-14

Course code		MATHEMATICAL STATISTICS	L	Т	Р	С						
Core/Elective/S	upportive	Core	6	0	0	4						
Pre-requisite		Basic Knowledge in Statistics and Probability theory.	Sylla Versi	bus on	20-2	21						
<b>Course Object</b>	tives:											
The main objectives of this course are to:												
1. Enables to learn different aspects of statistics.												
2. Acquire knowledge about moments and properties of theoretical distributions.												
3. Study unbiasedness and consistency of limiting distributions.												
Expected Course Outcomes:												
On the succes	sful comple	etion of the course, student will be able to:										
1 Remem	bering the u	inderstanding the basic concepts such as statistics, pro-	babili	y	K	.1						
and rand	lom variabl	es.			&	;						
	4				K	2						
2 Applyin	g the conce	pts and methods to find the moments of the distribution	ons.		K	.5						
3 Study m Further	ultivariate evaluating	distributions and the independence of random variable the marginal distributions from bivariate distributions.	es.		K	.5						
4 Analyze	an <mark>d study</mark>	the properties of some discrete as well as continuous			K	4						
distribut	tion <mark>s</mark>											
5 Underst	and the con	vergence of distributions and central limit theorem.			K	.2						
K1 - Rememb	er; <mark>K2 - U</mark> 1	ndestand; K3 - Apply; K4 - Analyze; K5 - Evaluate; F	K6 - C	reate	. /							
		1 8- 1/1										
Unit:1		Probability and Distributions		18	hou	rs						
Introduction	- Set Theo	ory - The Probability Set Function - Conditional	Prob	abili	ty a	nd						
Independence	-Random	<mark>i Variables - Discrete Random Variab</mark> les- Con	tinuou	is R	lando	m						
Variables.	901											
TI	00	(h. h. ilitar and Distail at the fame (and fame h) and		17	1							
Unit:2	Pr	Multivariate Distributions		17	nou	rs						
Probability	and Distr	ibutions: Expectation of a Random Variables	- Soi	me l	Speci	al						
Expectations -	- Important	Inequalities.										
Multivariate	Distributi	ions: Distributions of Two Random Variables -	Trans	form	natior	ıs:						
Bivariate Ra	ndom Vari	ables - Conditional Distributions and Expectation	ns - l	ndep	bende	nt						
Random Varia	ables.											
Unit:3		Some Special Distributions		18	hou	rs						
The Binomia	l and Rela	ated Distributions - The Poisson Distribution - The	he Г.	$\chi^2$ .	and	β						
Distributions	- The Norm	al Distribution.	,			,						
Unit:4	Some Sp	ecial Distributions (continued), Unbiasedness, Consistency and Limiting Distributions		17	hou	rs						
Some Special	Distributi	ons (continued): t and F-Distributions.										
Unbiasedness	s, Consist	ency and Limiting Distributions: Expectations	of H	Funct	ions	-						
Convergence	in Probabili	ity - Convergence in Distribution - Central Limit Theo	orem.									

	JCAA	DATED.23.00.2021
Unit:5	Some Elementary Statistical Inferences	18 hours
Sampling and	Statistics - More on Confidence Intervals - Introduction to H	ypothesis Testing -
Additional Co	mments About Statistical Tests - Chi-Square Tests - The Meth	od of Monte Carlo.
Unit:6	Contemporary Issues	2 hours
Expert lecture	s, online seminars - webinars	
	Total Lecture hours	90 hours
Text Book(s)		
1 Robert V.	Hogg, Allen T. Craig and Joseph W. McKean, Introduction to I	Mathematical
Statistics,	Sixth Edition, Pearson Education, 2005.	
Unit-I:	1.1 – 1.7	
Unit-II:	1.8 – 1.10, 2.1 – 2.3 <mark>, 2.5</mark>	
Unit-III:	3.1 - 3.4	
Unit-IV:	3.6, 4.1 - 4.4	
Unit-V:	5.1, 5.4 – 5.8	
<b>Reference Bo</b>	oks	
1 Michael J.	Crawley, The R Book, John Wiley & Sons, Second Edition (20	013).
2 Marek Fis	z, Probability Theory and Mathematical Statistics, John Wiley.	
3 Vijay K. R	coh <mark>atgi and A</mark> .K. Md. Ehsanes Saleh, An Introdu <mark>cti</mark> on to Probab	bility and Statistics,
Wiley Indi	ia, Second Edition (2001).	
4 M. Rajago	pal <mark>an a</mark> nd P. Dhanavanthan, Statistical Inference, PHI Learning	Pvt. Ltd., New
Delhi (201	2).	
	Trought and and a start a	
Related Onlin	ne Conte <mark>nts [MOOC, SWAYAM, NPTEL, Websites etc.]</mark>	
1 https://np	otel.ac.in/courses/111/104/111104032/#	
2 https://np	otel.ac.in/courses/111/105/111105090/	9
	8	S
Course Design	ned By: Dr. V. Jeyanthi	

Mapping with Programme Outcomes											
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	
CO1	S	Μ	M	5 தட்ப	InLon	2 M-	S	S	S	S	
CO2	Μ	S	Μ	DLCAT	S	SE	Μ	S	S	S	
CO3	S	Μ	S	Μ	Μ	S	S	Μ	L	S	
<b>CO4</b>	Μ	Μ	S	Μ	Μ	S	Μ	S	Μ	S	
CO5	Μ	Μ	L	Μ	S	Μ	S	S	S	S	

Course code		GRAPH THEORY	L	Т	Р	С					
Core/Elective/S	Supportive	Core	6	0	0	4					
Pre-requisite	<u>e</u>	Basic knowledge in Graph Theory at Undergraduate level.	Syllabus 2020- Version 2021								
<b>Course Objec</b>	tives:	<u> </u>									
The main object	ctives of thi	s course are to:									
1. To provide deep knowledge about fundamental concepts of Graphs and Trees.											
2. To introduce Matchings, Coloring, and Chromatic Number and to see its application in											
higher order thinking.											
Expected Cou	rse Outcor	nes:									
	siul comple	is sensents of Cranks and Trace			V	2					
	and the bas	ic concepts of Graphs and Trees			K	.2					
2 Analyze	e vertex and	edge connectivity concepts			K	.4					
3 Acquire	e knowledge	in Matching and Colourings			K	.4					
4 Apply C	Chromatic N	lumber			K	.3					
5 Determi	ining the pla	anar, non-planar, and directed graphs			K	3					
K1 - Rememb	oer; <b>K2 - U</b>	ndestand; K3 - Apply; K4 - Analyze; K5 - Evaluate; I	<b>X6</b> – C	Create	;						
	- ce										
Unit:1		Graphs, Subgraphs and Trees		18	hou	rs					
Graphs, Sub	graphs: C	Traphs and Simple Graphs – Graph Isomorphism – I	he Ind	ciden	ce a	nd					
Troos Troos	– Cut edge	rand Bonds - out vertices - Cayley's formula	/cies.								
fices. fices	- Cui cuges	and Bonds – cut vertices – Cayley's formula.									
Unit:2	Co	nnectivity, Euler tours and Hamilton Cycles		17	hou	rs					
Connectivity	: Connectiv	vity – Blocks.	9								
Euler tours a	and Hamilt	on Cycles: Euler tours - Hamilton Cycles.									
	64	The second second		1							
Unit:3	200	Matchings and Edge Colourings		18	hou	rs					
Matchings: N	Matchings c	overings in Bipartite Graphs – Perfect Matchings.									
Edge colouri	ngs: Edge d	chromatic humber – vizing s theorem.									
Unit:4	Indep	endent sets. Cliques and Vertex Colourings		18	hou	rs					
Independent	sets, Cliqu	es: Independent sets – Ramsey's theorem.		10	1100						
Vertex Color	urings: Chi	romatic Number – Brook's Theorem – Hajo's Conje	cture -	- Chr	oma	tic					
Polynomials -	- Girth and	Chromatic number.									
	1										
Unit:5	ha Diana	Planar Graphs and Directed Graphs		17 D	hou	rs					
<u>Flanar Grap</u> Kuratowski's	<u>theorem</u>	and planar Graphs – Dual Graphs – Euler's lor Proof omitted) – The Five Colour Theorem and	mula	– BI	ides	—					
Conjecture	uncorenn (	(1001 onnited) - The Tive Colour Theorem and	uic r	Oui	COIO	uı					
Directed Gra	aphs: Direc	ted Graphs.									
Unit:6		Contemporary Issues		2	hou	rs					
Interval graph	ns, chordal g	graphs – https://www.youtube.com/watch?v=Tg2_YO	4CCN	c							
		Total Lasture hours		00	hor	rc					
	1	Total Lecture hours		90	nou	12					

Te	ext Book(s)											
1	J. A. Bond	y and U. S. R. I	Murty, Graph Theory with Applications, American Elsevier									
	Company I	nc., New York	r, 1976.									
	Unit-I: Sections: $1.1 - 1.7, 2.1 - 2.4$											
	Unit-II:	Sections:	3.1 - 3.2, 4.1 - 4.2									
	Unit-III:	Sections:	5.1 - 5.3, 6.1 - 6.2									
	Unit-IV:	Sections:	7.1 - 7.2, 8.1 - 8.5									
	Unit-V:	Sections:	9.1 – 9.6, 10.1									
Re	eference Bool	ks										
1	Frank Hara	ry, Graph The	ory, Addison-Wesley, Reading, 1969.									
2	M.Muruga	n, Graph Theor	ry and Algorithms, Second Edition, Muthali Publishing House,									
	Chennai, 20	018.										
3	K. R. Parth	asarathy, Basic	c Graph Theory, Tata McGraw Hill, New Delhi, 1994.									
4	Douglas B.	West, Introdu	ction to Graph Theory, Prentice Hall of India, 2001.									
		- J										
Re	elated Online	Contents [M	OOC, SWAYAM, NPTEL, We <mark>bsites et</mark> c.]									
1	https://npte	el.ac.in/courses	/111/106/111106050/									
2	https://npte	el.ac.i <mark>n/cours</mark> es	/106/108/106108054/									
		21										
Co	ourse Designe	d <mark>By:</mark> Dr. R. B	uvaneswari									

A

Mapping with Programme Outcomes												
COs	<u>P</u>	Os	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	<b>PO8</b>	PO9	<b>PO10</b>
<b>CO1</b>			L	M	Μ	L	Μ	M	Μ	S	Μ	S
CO2		1	Μ	S	S	Μ	M	L	L	S	Μ	S
CO3		2	S	S	S	Μ	L	L	L	MS	L	Μ
<b>CO4</b>			S.L	Μ	S	S	Μ	L	M	S	Μ	Μ
CO5	1		Μ	L	S	Μ	Μ	Μ	М	S	Μ	S
*	S-Stron	ıg; M	-Mediu	m; L-Lov	N	AR.	0.07		0.6	Se /		
Coimbatore												
is all a second												
Solin mont 2 Minpr												
EDU000 TUNE												


Cou	rse code		FUNCTIONAL ANALYSIS	L	Т	Р	С				
Core	e/Elective/S	upportive	Core	7	0	0	4				
Pro	e-requisite		Know the basic concepts of Real Analysis and Linear Algebra at Undergraduate level	Sylla Versi	bus on	20-2	21				
Cou	rse Objec	tives:									
The	main obje	ctives of thi	s course are to:								
1.	To get an conjugate	n overview space ,bour	of normed spaces and familiarize on Banach space nded linear operators and spectral theory.	e, Hi	lbert	spac	ж,				
Exp	ected Cou	rse Outcon	nes:								
On	the succes	sful comple	etion of the course, student will be able to:								
1	Familia: linear st	rize with th	e concepts of normed linear spaces and operators on	norme	ed	K	1				
2	Demons spaces,	strate an und and their ro	derstanding of the concepts of Hilbert spaces and Bana le in mathematics	ach		K	2				
3	Apply t	he theorems	S			K	3				
4	Obtain	Orthogonal	complements, Orthonormal sets and conjugate space.			K	4				
5	5 Understand the concepts of linear operators, self adjoint, unitary operators , K2										
	isometric isomorphism on Hilbert spaces ,Determinants ,the spectrum of an operator, Banach algebra .										
<b>K1</b> - Remember; <b>K2</b> - Undestand; <b>K3</b> - Apply; <b>K4</b> - Analyze; <b>K5</b> - Evaluate; <b>K6</b> - Create											
		13									
Un	it:1		Banach Spaces		21	hou	rs				
Bai	nach space	s – The def	inition and some examples – Continuous linear transfo	ormati	ons –	A					
The	e Hahn-Ba	nach theore	m –Dual spaces- The natural imbedding of N in N**.	The o	open						
ma	apping theo	orem - Clos	ed Graph theorem.	ž į							
TT		64	TTU		01	1					
Un Th	IC:2	of on onen	Hilbert spaces	Th	21	nou	rs				
and	l some sim	ple properti	ies – Orthogonal complements and complements - Ort	honor	mal s	ets a	nd				
seq	uences – N	laximal Or	thonormal sets.								
Un	it•3		Hilbert spaces (Contd)		21	hou	rs				
Th	n.5 ne Coniuga	te snace H*	- Representation of functional on Hilbert spaces - The	adioi	$\frac{21}{\text{nt of}}$	an an	15				
op	erator – Se	elf-adjoint o	perators – Normal and unitary operators – Projections								
		-	· · · · · ·								
Un	it:4		Finite-Dimensional Spectral Theory		20	hou	rs				
Ma	trices – De	eterminants	and the spectrum of bounded operator – The spectral	theore	m.						
Un	it:5	Ge	neral Preliminaries on Banach Algebras		20	hou	rs				
The	e definitior	and some	examples of Banach algebra – Regular and singular el	ement	<u>s</u> –	275					
Toj	pological d	livisors of z	ero – The spectrum – The formula for the spectral rad	ius.							
Un	it:6		Contemporary Issues		2	hou	rs				
Co	mmutative	Banach Al	gebras – https://www.youtube.com/watch?v=SW-Gu	EOwax	M	-100					
			Total Lecture hours		105	hou	rs				

Te	ext Book(s)							
1	G. F. Simmons, Intr	roduction to Topology and Modern Analysis, McGraw-Hill Book						
	Company, London,	1963.						
	Unit I:	Sections: 46 – 50.						
	Unit II:	Sections: 51 – 54.						
	Unit III:	Sections: 55 – 59.						
	Unit IV:	Sections: 60 – 63.						
	Unit V:	Sections: 64 – 68.						
Re	eference Books							
1	C. Goffman and G. Pedrick, A First Course in Functional Analysis, Prentice Hall of India,							
	New Deli, 1987.							
2	G. Bachman and L.	Narici, Functional Analysis, Academic Press, New York, 1966.						
3	L. A. Lusternik and	V.J. Sobolev, Elements of Functional Analysis, Hindustan Publishing						
	Corporation, New I	Delhi, 1971.						
Re	elated Online Con <mark>te</mark>	nts [MOOC, SWAYAM, NPTEL, Websites etc.]						
1	https://nptel.ac.in/	courses/111/105/111105037/						
2	https://ocw.mit.edu	/courses/mathematics/18-102-introduction-to-functional-analysis-spring-						
	2009/lecture-notes/							

Course Designed By: Dr. C. Janaki

Mapping with Programme Outcomes											
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	
CO1	S	S	S	M	M	M	S	L	M	S	
<b>CO2</b>	S	S	M	Μ	L	S	S	M	S	Μ	
CO3	M 6	Μ	L	S	S	S	S	S	Μ	S	
CO4	S	Μ	S	L	L	S	S	S	Μ	S	
CO5	S	S	S	L	Μ	S	S	Μ	S	Μ	
*S-Stro	ong; M-N	Iedium;	L-Low	0	oimbato	re .		60			
			500				ar				
a Anti-											
				SOL	பாரை	2.4.					
				SUUCAT	E TO EL	EVALE					

Course code		MATHEMATICAL METHODS	L	Т	Р	С			
Core/Elective/S	Supportive	Core	7	0	0	4			
Pre-requisite		Basic Knowledge in Calculus and Differential equations.	Sylla Versi	bus on	20-2	21			
<b>Course Object</b>	tives:	<u>^</u>							
The main object	ctives of thi	s course are to:							
1. Give an ir	ntroduction	to mathematical methods for solving application-ories	nted pr	oble	ms				
2. Able to kr	now the con	cepts line Integral Transforms, Integral Equations and	d calcu	lus c	of				
variations									
3. Develop t	he alternativ	ves to solve the real-life problems.							
Free estad Care									
Expected Cou	rse Outcon	nes:							
	and and An	choir of the course, student will be able to.			V2	0_			
1 Underst	and and Ap	ply various transforms and integral equations to solve	2		K2 K2	, <b>x</b>			
2 Recognize and solve the special cases of Volterra Integral equations by the K1									
method of resolvent kernel method of successive approximations and by using K5									
transfor	ms.		<b>a</b> biii <b>b</b>		110				
3 Understand the relations between the Hankel, Fourier transform and their K									
applications in evaluating the equations.									
4 Understand the formulation of variational problems, the variation of functional K2									
and its properties.									
5 Demons	strate and a	oply the methods in all application problems in day-to	day lif	e.	K5 K6	&			
K1 - Rememb	per; <b>K2</b> - U	nderstand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (	Creat	e				
	2	2 Contraction of the	6	Â					
Unit:1	6	Integral Equations			21 ha	ours			
Types of Integ	ral equation	ns – Integral Fredholm Alternative - Approximate me	thod –	Equ	ation				
with separable	e Kernel - V	olterra integral equations – Fredholm's theory.							
I		Combatore			<u></u>				
Unit:2	Арриса	auon of Integral Equations to Ordinary Integral			21 NC	ours			
Initial value	problems E	Soundary value problems – singular integral equations	ons –	Abel	Inte	gral			
equation.	2100101110 2	EDUCATE TO ELEVATE				8			
Unit:3		Fourier Transforms			20 ha	ours			
Fourier Trans	sforms, Fou	rier sine and cosine transforms - Fourier transfor	ms of	deri	vativ	es -			
convolution in	ntegral – Pa	rseval's Theorem - Solution of Laplace Equations by	Fourie	er tra	nsfor	m.			
T 1		Howhol Trongforme			<b>3</b> 0 b a				
Unit:4 Properties of F	- Jankel Trar	sforms – Hankel transformation of derivatives of fun	ctions	_ Th	<u>20 no</u> 2	ours			
Parseval's rela	-relat	ion between Fourier and Hankel transforms - Axisym	metric	Diri	c hlet				
problem for a half space - Axisymmetric Dirichlet problem for a thick plate.									
Unit:5		Calculus of Variations			21 ha	ours			
Variation and	its properti	es - Euler's(Euler Lagrange's) equation - functiona	ls depe	ende	nt on	the			
functions of se	veral indep	endent variables - variational problems in parametric	form -	-appl	licatio	ons.			

				JCAA	DATED.25.00.2021
Uı	nit:6		Cont	emporary Issues	2 hours
Z-	transform a	and inverse	e Z-transform –	- http://www.digimat.in/nptel/courses/v	ideo/111107098/
L3	39.html				
				Total Lecture hours	105 hours
Te	ext Book(s)	)			
1	Units I a	and II: R	am P. Kanwa	l, Linear Integral Equations Theory	and Technique,
	Academic	Press, Ne	w York, 1971.		-
	Un	nit I:	Chapter 2:	46 – 50.	
	Uni	it II:	Chapter 3:	51 – 54.	
2	Units III	and IV: I.	N. Sneddon, T	The Use of Integral Transforms, McGra	w-Hill, New
	York, 197	72.			
	Un	nit III:	Chapter 2:	2.3 - 2.5, Chapter 3: $3.3 - 3.4$ .	
	Un	it IV:	Chapter 5:	5.1 – 5.2, Chapter 8: 8.1 – 8.2.	
3	Unit V: L	. Elsgolts,	Differential Ec	quations and Calculus of Variations, M	ir Publishers,
	Moscow,	1970.			
	Un	iit V: 💋	Chapter 6:	6.1 - 6.3, 6.4 - 6.7.	
Re	eference B	ooks	S / 12		
1	Calculus	of Variation	ns, A.S. Gupta, I	Prentice Hall of India, New Delhi, 2005.	
2	Integral E	Equations ar	nd Boundary val	ue problems, M.D. Raisinghania, S. Chanc	l and Company, 2007.
3	M.L. Kra	asno <mark>v, Prol</mark>	blems and Exer	rcises in Integral Equations, Mir Public	ation Moscow 1971.
		E			
Re	elated Onli	ine C <mark>onte</mark> r	nts [MOOC, S	WAYAM, NPTEL, Websites etc.]	
1	https://n	ptel.ac.in/c	ourses/111/10	7/111107103/	
2	https://n	ptel.ac.in/c	ourses/111/10	7/111107098/(Lec 51 to 55)	
3	https://y	outu.be/tfF	ZqIflEfQ	and the second second	
		5	70		
Co	ourse Desig	gned By: [	Dr. V. Jeyanthi		8
		301		CIAR UNI	

Mapping with Programme Outcomes											
COs Pos	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	
CO1	Μ	M	$\mathbf{L}$	Μ	M	M	Μ	S	L	S	
CO2	Μ	Μ	$\sim \mathbf{E}^{-1}$	- MO	Μ	L	S	Μ	Μ	Μ	
CO3	L	Μ	M	EM E	EL	L	S	Μ	Μ	Μ	
CO4	L	Μ	Μ	L	Μ	L	Μ	S	Μ	S	
CO5	Μ	Μ	Μ	S	Μ	M	S	S	L	S	

Course code		<b>OPTIMIZATION TECHNIQUES</b>	L	Т	Р	С				
Core/Elective/S	Supportive	Core	6	0	0	4				
Pre-requisite	 2	Basic knowledge in Operation Research at Undergraduate level.	Sylla Versi	bus on	20-2	21				
Course Object	tives:									
The main object	ctives of thi	s course are to:								
1. To make t	the students	understand solving LPP using various methods.								
2. To unders	stand the ap	plication of queuing theory in real life situation and m	ethods	s of s	olvin	g				
related pro	oblems.									
3. To unders	stand the co	ncept of Kuhn tucker method.								
Exported Cou	rso Outoor	nosi								
On the successful completion of the course, student will be able to:										
1 Explain various techniques to solve real life problems expressed in terms of LPP K2										
2 Solving LPP through Dynamic Programming										
2 Solving LPP unough Dynamic Programming										
3 Apply th		ntal concept of inventory control.			K	. <u>)</u>				
4 Underst	anding the	queuing theory			K	2				
5 Solving NLPP using Kuhn–Tucker Method H										
K1 - Remember; K2 - Undestand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create										
Unit:1	Integen	Integer Programming	Dr. En	18	hou	rs				
method(all in	- mieger teger)-The	Cutting – Plane Algorithm – Branch-and-Bound To	on-ria	ule –	Tar C	ul				
One Implicit	Enumeratio	n Algorithm.	Joining	lac	Ler	0				
				$\Lambda$						
Unit:2	E	Dynamic Programming	3 /	18	hou	rs				
Introduction –	Applicatio	<mark>n of Dynamic Programming: Capi</mark> tal Budgeting Proble	em – F	Relial	oility	,				
Improvement	Problem –	Stage-coach Problem - Cargo Leading Problem - Mir	iimizii	ng To	otal					
Tardiness in S	ingle Mach	ine Scheduling Problem – Optimal Subdividing Proble	em – S	Soluti	on o	f				
Linear Program	mming Pro	blem through Dynamic Programming.								
Unit·3		S Inventory		17	hou	rs				
Introduction-	Inventory	Decisions-Cost Associated- with Inventories – H	Factors	$\frac{1}{8}$ Af	fecti	ng				
inventory – E	Economic C	Order Quantity-Deterministic Inventory Problems with	th No	Sho	rtage	s–				
Deterministic	inventory	Models with shortages-EOQ with Price Brown	eaks–ľ	Multi	Ite	m				
Deterministic	problems-	Inventory Problems with Uncertain Demand.								
	1	0								
Unit:4	Ouring	Queuing Theory	Char	17	hou	rs				
Output System	- Queuing	System-Elements of Queuing System – Operating iffication of Queuing Models Model I $(M/M/1)$ :	Chara /FIEC		Istics	оі 1 п				
$(M/M/1) \cdot (N/$	FIFO) Mo	del-III (M/M/C)·(∞/FIFO) Model-IV (M/M/C)·(N/F	JFO)	Proh	lem	$\sin \frac{1}{2}$				
$(M/M/C):(M/FIFO)$ , Model-III $(M/M/C):(\infty/FIFO)$ , Model-IV $(M/M/C):(N/FIFO)$ . Problems in above four models.										
Unit:5		Nonlinear Programming		18	hou	rs				
Introduction -	- Lagrangi	an Method –Jacobi Method– Kuhn–Tucker Met	hod	- Q	uadr	atic				
Programming	– Separab	le Programming – Chance–Constrained Programm	ing o	or St	ocha	stic				
Programming.										

		JCAA	DATED.23.00.2021						
Uı	nit:6	Contemporary Issues	2 hours						
Go	oal Progran	ming - https://freevideolectures.com/course/2678/advanced-op	erations-research/9						
		Total Lecture hours	90 hours						
Те	ext Book(s)								
1	Hamdy	A. Taha, Operations Research, Sixth edition, Prentice-Ha	ll of India private						
	Limited,	New Delhi,1997.							
Re	eference B	ooks							
1	Kanti Sv	varup, P. K. Gupta, Man Mohan, Operations Research, Sult	an Chand & Sons,						
	Educatio	nal Publishers, New Delhi.							
2	Prem Kumar Gupta, D. S. Hira Operations Research, Seventh Edition, S. Chand &								
	Company Pvt. Ltd, 2014.								
3	3 F. S. Hillier and J. Lieberman, Introduction to Operation Research, Seventh Edition, Tata–								
	McGraw-Hill Publishing Company, New Delhi, 2001.								
4	R. Pann	eerselvam, Operations Research, Second Edition, PHI Learnin	ng Private Limited,						
	Delhi, 20	015.							
5	I. Griva,	S. G. Nash and A. Sofer, Linear and Nonlinear Optimization,	SIAM Publication,						
	2018.								
Re	elated Onli	ne <mark>Contents</mark> [MOOC, SWAYAM, NPTEL, W <mark>eb</mark> site <mark>s</mark> etc.]							
1	https://w	ww <mark>.you</mark> tube.com/watch?v=WmeUT0jQdwc							
2	https://w	ww <mark>.you</mark> tube.com/watch?v=FTEMe5oUrds&list=PLLy_2iUCG	<mark>8</mark> 7Bq8RGMTdeFZ						
	iB-87V4	i9p1&index=28							
3	https://w	ww.youtube.com/watch?v=2aPlzhsEsIw							
4	https://w	ww.youtube.com/watch?v=PavZX3hAL6I							
		in the second							
Co	ourse Desig	ned By: Dr. N. Mala	3						

Mapping with Programme Outcomes											
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	PO10	
CO1	Μ	L	S	Μ	Μ	S	S	S	S	S	
CO2	S	Μ	SS @	S	S	S	Μ	S	L	S	
CO3	S	Μ	S	5si	InSof	2.SLIW	Μ	S	L	S	
<b>CO4</b>	Μ	L	S	DM AT	Μ	EV STE	S	S	S	S	
CO5	S	Μ	S	S	S	S	Μ	S	L	S	

S

Course	code		COMPUTER PROGR	AMMING	T	т	Р	C		
Course	couc		(C++ THEORY)			•	•	C		
Core/El	lective/Sup	oportive	Core	. D	4	0	0	4		
D	• . • . • .		Basic knowledge in C+	+ Programming such as	Sylla	bus	20.2	1		
Pre-re	equisite		and Objects	ontrol Structure, Classes	Versi	on	20-2	1		
Course	Objectiv	ves:	und Objects.							
The ma	in objecti	ves of thi	course are to:							
1 T	o give the	e students	on awareness of the object	t oriented programming						
2. T	o give inc	the stude	s to write the C++ program	ams using classes. function	s and ii	nterfa	aces.			
3. T	o make a	plicatior	using $C++$ programs.	0.00.0						
	<b>_</b>		8 1 6							
Expect	ed Cours	e Outcor	es:	6						
On the	e successf	ul co <mark>mple</mark>	ion of the course, studen	t will be a <mark>ble to</mark> :						
1 U	nderstand	and appl	the C++ structure, toker	ns, expressions, control stru	ctures		K	2,		
		- AS		1500 K-			K	3		
2 A	bility to d	le <mark>clare</mark> va	ous prototyping, friend a	nd virtual functions			K	3		
3 C	reate Clas	s <mark>ses, obje</mark>	s, arrays of objects, cons	structors, and Destructors			K	3,		
		E	a fill and				K	4		
4 A	4 Analyze over loading operators and inheritance K4									
5 Deliberate files, pointers and templates. Create, design and develop quality K4,										
pr	rograms in	n C++	1				K	5		
<b>K1</b> - R	Remember	:; <b>K2</b> - <mark>U</mark> 1	l <mark>estand; K3 - Apply; K4</mark>	- Analyze; <b>K5</b> - Evaluate;	<b>K6 – C</b>	create	e			
			S COM	NO NO	9					
Unit:1		2 1	okens, Expressions and	Control Structure	3	12	2 hou	rs		
Basic C	Concept o	of Object	Oriented Programming	- Basic Concept of OOPS	-Benef	its o	f OO	P –		
Applica	ations of	OOP. To	ens, Expressions and	Control Structure: Intro	luction	- T	oken	s –		
Keywoi	rds – Ider	itifiers an	Constants – Basic Data	Types – User Defined Da	ita Typ	es - D	Derr	ved		
Data I Voriobl	ypes – I	Jeclaratic	of Variables – Dyna	Control Structures	lables	– K	eiere	nce		
v al lable	es – Oper	at015 - 5		Control Structures.						
Unit · 2	2		Functions in	CHATE		12	2 hou	rs		
Funct	ions in (	C++: Int	duction – The Main H	Function – Function Prote	otyping	- (	Call 1	by		
Refere	ence– Ret	urn by Re	erence – Inline Function	ns – Default Arguments –	const A	rgur	nents	_		
Recurs	sion – Fur	nction Ov	r Loading – Friend and V	/irtual Functions – Math Li	brary H	Funct	ions.			
Unit:3	3	Classes	nd Objects & Construc	tors and Destructors		12	2 hou	rs		
Classe	s and O	bjects: I	roduction - C Structur	es Revisited - Specifying	a Cla	ss –l	Defin	ing		
Membe	r Function	ns – A C	+ Program with Class –	Making An Outside Func	tion Inl	ine -	-Nest	ing		
Of Member Functions – Private Member Functions – Arrays Within A Class – Arrays of Objects –										
Objects	Objects as Function Arguments – Friend Functions.									
Constructors and Destructors: Introduction – Constructors – Parameterized Constructors –										
of Obje	Multiple Constructors in a Class – Constructors with Default Arguments – Dynamic Initializations									
	cis – cop	y Constit	-DCSILUCIOIS.							

	SCAAL	JATED:23.06.2021								
Unit:4	Operator Overloading, Inheritance and Extending	11 hours								
	Classes									
<b>Operator</b> Over	rloading: Introduction – Defining Operator Overloading –	Overloading Unary								
Operators – C	verloading Binary Operators – Overloading Binary Operator	ors Using Friends –								
Manipulating of	f Strings Using Operators – Rules for Overloading Operators.	C								
Inheritance -	Extending Classes: Introduction – Defining Derived Classes -	- Single Inheritance								
- Making a Private Member Inheritable - Multilevel Inheritance - Multiple Inheritance -										
Hierarchical In	heritance – Hybrid Inheritance – Virtual Base Classes – Abstra	ct Classes.								
Unit:5	Streams and Working with files	11 hours								
Streams: Intr	oduction – C++ Streams – C++ Stream Classes. Working wi	ith files: Classes for								
File Stream O	perations - Opening and Closing a File – File Modes – Fil	e Pointers and their								
Manipulations	– Sequential Input and Output Operations – Random Access.									
Unit:6	Contemporary Issues	2 hours								
Expert lecture	s. online seminars - webinars									
<b>r</b>										
	Total Lecture hours	60 hours								
Text Book(s)										
1 E. Balaguruswamy, Object, Oriented Programming with City, Sixth Edition, Teta MaCraw										
Lill Dublid	bing Company Limited	on, Tata McOlaw-								
	14 16 2 1 2 14 and 2 24									
	1.4 - 1.0, 3.1 - 3.14 and $3.24$									
	4.1 - 4.11									
	3.1 - 3.9, 3.13 - 3.13, 0.1 - 0.7 and $0.11$									
	10.1 - 10.2 and $11.1 - 11.9$									
	10.1 - 10.5 and $11.1 - 11.8$									
Reference Bo	oks									
		9								
I Program	ning with C++ by D. Ravichandran, -Tata McGraw Hill p	ublishing company								
limited, f	New Delhi.									
2 Object O	riented Programming with C++ by S.S.Vinod Chandra, New ag	je.								
	Coimbature Co									
Related Onli	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]									
1 https://np	tel.ac.in/courses/106/105/106105151/									
2 https://yo	utu.be/1rJZb_Ugc4E_D//corr and multi									
	CALL TO BLAD									
Course Desig	ned By: Prof. D.Saravanan.									
0										

Mapping with Programme Outcomes											
COs Pos	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	
CO1	S	Μ	S	Μ	Μ	S	L	Μ	S	S	
CO2	Μ	S	S	Μ	S	S	L	Μ	S	S	
CO3	Μ	Μ	L	S	Μ	Μ	L	S	S	Μ	
CO4	Μ	S	S	L	Μ	S	Μ	S	S	Μ	
CO5	Μ	Μ	L	L	S	S	Μ	S	S	Μ	

Course code	COMPUTER PROGRAMMING (C++ PRACTICAL)	L	Т	Р	С
Core/Elective/Supportive	Core	0	0	2	4
Pre-requisite	basic knowledge in programming in C++	Sylla Versi	21		
<b>Course Objectives:</b>					
The main objectives of the	nis course are to:				
<ol> <li>To enable the studen</li> <li>To make the mather</li> </ol>	ts to solve problems in C++ using different numerical met natical calculations simpler.	hods.			
<ol> <li>friend FUNCTION centimetres and feet-ind add one object with an may be stored in any o should be in the order display.</li> <li>OVERLOADING O all the four arithmetic on</li> </ol>	<b>usage:</b> Create two classes to store the value of disches. Write a program that can create the values of the other. Use a friend function to carry out addition ope bject depending on the units in which results are required of meters & centimetre and feet & inches depending <b>DBJECTS:</b> Create a class that contains one float data in perators so that operate on the objects of the class	tances class ration ired. g on t nembe	in to obje . The The he o er. O	meter cts ar e resu displ rder verlo	rs- nd ult ay of ad
<b>3. OVERLOADING</b> plane using polar co-or objects of <b>Polar</b> . Note to the conversion of points co-ordinates. You need (a);= ; = * + * . <b>4. OVERLOADING</b> overloading concepts for replace the values in a F	<b>CONVERSIONS:</b> Design a class <b>Polar</b> which description description of a class <b>Polar</b> which description description of a Vector Polar and Polar values of two points directly. If the values of two points directly is into rectangular co-ordinates and finally converting the to use following trigonometric formulae: $= r * cos(decomposition vector)$ Define a class for Vector containing scale for Vector Addition, Multiplication of a Vector by a Position Vector.	Thes a erator This r e resu a); ar va a scal	to a equin lt int = lues. ar qu	nt in dd tw res fin o pol r * s App iantit	a vo rst lar <i>sin</i> oly ty,
<b>5. OVRELOADING N</b> Create a class <b>MAT</b> of Verify the identity: ( <i>A-I</i>	<b><u>HATRIX</u></b> : size m * n. Define all possible matrix operations for <b>N</b> $B_{3}^{2} = A^{2} + B^{2} - 2AB$ .	<b>IAT</b> t	ype o	objec	ts.
<b><u>6. INHERITANCE</u></b> : C member. The class <b>gar</b> function in the class <b>ga</b> program to print the val	breate three classes: <b>alpha</b> , <b>beta</b> and <b>gamma</b> , each co <b>nma</b> should be inherited from both <b>alpha</b> and <b>beta</b> . In <b>amma</b> to assign values to the data members of all the ue of data members of all the three classes.	ntaini Use a e class	ng or cons ses. V	ne da struct Write	ata tor 3 a
7. FILE HANDLING: telephone numbers in t interactive menu to acco (a) Determine the telephone (b) Determine the name i (c) Update the telephone	Write a program to create a disk file containing the wo columns, using a class object to store each set of ess the file created and to implement the following tasks one number of the specified person. f a telephone number is known. number, whenever there is a change.	list of f data s:	f nam . Des	nes an sign	nd an



Course co	ode		Elective 1: NUMBER THEORY	L	Т	Р	С
Core/Elect	tive/S	upportive	Elective	4	0	0	4
Pre-requ	isite	•	Basic knowledge in Number system, divisibility and some related functions	Sylla Vorsi	bus	20-2	21
Course O	biec	tives:	and some related functions.	V CI SI	UII		
The main	obje	ctives of thi	s course are to:				
1. To 9	ive I	ntroduction	to Elementary Number Theory.				
2. To s	how	how certain	number theorems can be applied within Cryptograph	y.			
				-			
Expected	Cou	rse Outcon	nes:				
On the su	lcces	sful comple	etion of the course, student will be able to:			1	
1 Find Algo	l quo orithi	tients and ron	emainders and greatest common divisors applying Euc	lidear	1	K	3
2 Und	ersta	nd the defir	itions of congruence, residue classes and least residue	es		K	2
3 Ana	lyze	the concept	of Prime Power Moduli and Quadratic Residues			K	4
4 Dete	ermir	e multiplic	ative inverses, modulo n and use to solve linear congru	uence.		K	3
5 Ac	quire	knowledge	on Linear Diaphantine equation			K	4
<b>K1</b> - Rer	nemt	ber; <b>K2</b> - U	derstand; <b>K3</b> - Apply; <b>K4</b> - Analyze; <b>K5</b> - Evaluate;	K6 – (	Creat	e "	
	4	E	A 2000				
Unit:1		1 5	Divisibility		11	hou	rs
Divisibili	ty an	d Euclidear	algorithm.				
TI '' O					10		
Unit:2	2005	Fulor's th	Wilson's Theorem Solutions of congruences	Con		hou	rs
Degree 1	Chi	nese Rema	inder Theorem. The functions $\phi(n)$ . Congruences of hi	oher d	leore		01
	. Сп	inese Rema	$\varphi(n)$ , congruences of m	giler e	10510		
Unit:3		Cor	agruences (contd), Quadratic Reciprocity		11	hou	rs
Prime p	ower	moduli, Pri	me modulus. Quadratic residues - Quadratic reciproci	ty.			
			~St Quitte State				
Unit:4	•	Jacobi Sy	mbol and Some Functions of Number Theory	1.	12	hou	rs
The Jacol	51 SYI	nbol – Grea	atest integer function - Arithmetic functions – The Mo	ebius	Inver	sion	
Tormula.							
Unit:5		Arithr	netic Functions and Diophantine Equations		12	hou	rs
Multiplica	ation	of arithmet $\frac{1}{4}$	ic functions, Linear Diophantine equations – The equ	ation	$x^{2} + y^{2}$	$y^2 = 1$	$z^2$ -
The equat	10n x	$y^{-} + y^{-} = z^2$ .					
∐nit•6			Contemporary Issues		•	hou	re
Sum of F	Four	Squares – h	ttps://www.youtube.com/watch?reload=9&v=ZBJLW	HpNn	<u>–</u> 18	nou	10
		1		<u> </u>			
			Total Lecture hours		60	hou	rs

Te	ext Book(s)
1	Ivan Niven and Herbert Zuckerman, An Introduction to the Theory of Numbers, John Wiley
	and Sons Inc., 1972.
	Unit-I: Chapter I: Sections: 1.1 – 1.3
	Unit-II: Chapter II: Section: $2.1 - 2.5$
	Unit-III: Chapter II: Section: $2.6 - 2.7$ , Chapter III: Section: $3.1 - 3.2$
	Unit-IV: Chapter III: Section: 3.3, Chapter IV: Section: 4.1 – 4.3
	Unit-V: Chapter IV: Section: 4.4, Chapter V: Section: 5.1 – 5.6
Re	eference Books
1	T. M. Apostol, Introduction to Analytic Number Theory, Springer Verlag, 1976.
2	Kenneth H. Rosen, Elementary Number Theory and its Applications, Addison Wesley
	Publishing Company, 1968.
3	George E. Andrews, Number Theory, Hindustan Publishing, New Delhi, 1989.
D	alated Online Contents MOOC SWAVAM NDTEL Websites at a l
N	erated Ominie Contents [WOOC, SWATAM, NTTEL, Websites etc.]
1	https:// treevideolectures.com/course/302//cryptography-and-network-security
2	https://www.youtube.com/watch?v=SCvtxjpVQms&t=3321s (NPTEL)
3	https://www <mark>.youtube.c</mark> om/watch?v=Oyw5OmOd9B8&list=PLLtQL9wSL16iRzTi2aKPiH
	O1f1UjTTkJD (Mathpod)
	the second se

Course Designed By: Dr. R. Buvaneswari

Mapping with Programme Outcomes											
COs Pos	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	PO10	
CO1	S	Μ	Μ	L	M	Μ	Μ	M	M	S	
CO2	M	S	L	M	Μ	S	Μ	M	S	S	
CO3	Lo	M	S	Μ	S	S	M	M	S	S	
CO4	L	M	Μ	L	L	Μ	Μ	S	S	S	
CO5	S	M /	M	L	Μ	S	Μ	S	S	S	

*S-Strong; M-Medium; L-Low 55 5 LILI 1600 2-11197

Course code		ELECTIVE 2: DIFFERENTIAL GEOMETRY	L	Т	Р	С		
Core/Elective/S	Supportive	Elective	4	0	0	4		
Pre-requisiteAcquire knowledge about the concept of curves, surfaces, and their higher dimensional analogues using the methods of calculus.Syllabus Version								
The main object	ctives of thi	s course are to:						
<ol> <li>Gain kno</li> <li>Get suffice</li> <li>Make the</li> </ol>	wledge abo cient knowl students to	ut curves and its characterizations. edge on Elementary Theory of surfaces. familiarize with space curves and curves on surfaces.						
Expected Cou	rse Outcor	nes:						
On the succes	sful comple	etion of the course, student will be able to:						
1 Define a	and underst	and basic definitions of the theory of curves.			K	.1		
2 Interpre	t the notion	s of surface of revolution and direction coefficients.			K	2		
3 Analyze	e the eleme	nts of Analytic representation.			K	4		
4 Acquire	knowledge	e on first fundamental form and second fundamental for	orm.		K	4		
5 Explain	Meusnier's	theorem and Euler's Theorem on elementary theory of	f surfa	ice.	K	3		
K1 - Rememb	per: <b>K2</b> - U	ndestand: K3 - Apply: K4 - Analyze: K5 - Evaluate: K	$\frac{1}{10}$	reate				
	E			Tour				
Unit:1	12	Curves		11	hou	rs		
Analytic repre	esentation -	Arc Length – Osculation plane.			7			
	4		N					
Unit:2		Curves (Continued)		12	hou	rs		
Curvature tor solutions of N	rsion – For Vatural equa	mulas of Frenet - Contact – Natural equations – F	lelices	s <b>- (</b>	Gener	al		
	2	AR UN	1					
Unit:3	Curves (	Continued) and Elementary Theory of Surface		12	hou	rs		
Evolutes and	Involutes -	Elementary theory of surface: Analytic representation	•					
				- 10				
Unit:4	Ele Ele	ementary Theory of Surface (Continued)		12	hou	rs		
form.	ental lorm -	- Normal, Tangent plane – Developable surfaces - Sec		unda	inen	ai		
Unit:5	Ele	ementary Theory of Surface (Continued)		11	hou	rs		
Meusnier's th	eorem – Eu	ıler's Theorem – Dupin's indicatrix – Some surfaces.						
<b>T</b> T <b>1</b> ( <b>6</b>								
Unit:6	rfagge httr	Contemporary Issues		2	hou	rs		
Quadratic Sui	naces – nu	s.//youu.be/E1L0/2Q3gu8						
		Total Lecture hours		60	) hou	rs		
Text Book(s)								
1 Dirk J. Str Company,	ruik, Lectur , 1961.	es on Classical Differential Geometry, Addison Wesle	y Pub	lishiı	ng			

ர்த்திட வே

Re	eference Books
1	Differential Geometry by T.J. Willmore, Oxford University Press (Seventeenth
	Impression - 2002).
2	Differential Geometry by A First Course by D. Somasundaram, Narosa Publishing House,
	Reprint 2008.
Re	elated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://nptel.ac.in/noc/courses/noc16/SEM2/noc16-ma07/
2	https://www.youtube.com/watch?v=tKnBj7B2PSg
3	http://pages.uoregon.edu/koch/math433/Final.pdf

Course Designed By : Prof. M. Indhumathi

Mapping with Programme Outcomes										
COs POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	Μ	S	S	L	S	S	L	Μ
CO2	Μ	S	Μ	M	M	Μ	Μ	L	Μ	S
CO3	S	Μ	S -	M	SL/	Μ	S	Μ	S	L
<b>CO4</b>	M	S	L	S	S	L	M	S	Μ	S
CO5	M	S	Μ	S	M	M	S	M	S	Μ

*S-Strong; M-Medium; L-Low

Page **46** of **65** 

Course code		ELECTIVE 3: NEURAL NETWORKS	L	Т	Р	С				
Core/Elective/S	Supportive		4	0	0	4				
Pre-requisite	Initial production     Basic Knowledge in Computer Architecture and basics of algorithms     Syllabus Version									
<b>Course Objec</b>	tives:	<u> </u>								
The main object	ctives of thi	s course are to:								
1. To know	the main	fundamental principles and techniques of neural n	etwork	s sys	tems	and				
investigate the principal neural network models and applications.										
2. Acquire i	n-depth kno	owledge in Non-linear dynamics								
3. Apply net	iral networl	to classification and generalization problems.								
Expected Cou	rse Outcor	nes:								
On the succes	sful comple	etion of the course, student will be able to:								
1 Understa	nd and anal	yze different neutron network models			K &	2 :K4				
2 Understa	nd the basic	c ideas behind most common learning algorithms for 1	nultila	yer	K	2				
perceptio	ons, radial-b	asis function networks.								
3 Describe	Hebb rule	and analyze back propagation algorithm with example	es.		K	4				
4 Study co	nvergence a	and generalization and implement common learning a	gorith	m,	K	6				
5 Study dir	ectional de	rivatives and necessary conditions for optimality and	to	Ň	K	5				
<b>K1</b> Romomb	quadratic fu	inclions.	<b>V</b> 6 (	root						
KI - Kemenn	Jei, <b>K2 -</b> U	iderstand, K5 - Appry, K4 - Anaryze, K5 - Evaluate,	<b>K</b> 0 - C	Ital	-					
Unit-1		Neuron Model and Network Architectures		- 1'	2 ho	ure				
Mathematical	Neuron M	odel- Network Architectures- Perceptron-Hamming	Netwo	rk- 1	Honf	ield				
Network-Lean	rning Rules		<u>8</u>		Topi					
IL:4.0	905	Deside the life of		1	<u> </u>					
Unit:2	malaita atuma	Perceptron Architectures	1	L beel	$\frac{2 h_0}{11 h_1}$	ours				
Learning -Lin	ear Associa	and Learning Rule with Proof of Convergence. S	superv	isea	Heb	bian				
		Stutution 2 Million								
Unit:3		Supervised Hebbian Learning	1 1	1	2 ho	urs				
Multilayer Pe	rceptrons.	inverse Rule-Variations of Hebbian Learning-B	ack P	ropa	gatio	n -				
Unit:4		Back Propagation		1	1 ho	urs				
Back propag Optimum Poi	ation Algo nts-Taylor s	rithm-Convergence and Generalization - Performa	inces	Surfa	ces	and				
Unit:5	Pertorma	Minima Naccourts Conditions for Optimizations		1 2 E	1 ho	ours				
Directional L	Derivatives	- Minima-Necessary Conditions for Optimality-Q	uadrati	c Fu	inctio	ons-				
renormance	opunizatio	ms-succepts Descent-newton's method-Conjugate G	autent	•						
Unit.6		Contemporary Issues			2 ho	iire				
Widrow-Hoff	Rule – httr	os://www.youtube.com/watch?v=niF7XUvfEn4			<u> </u>	415				
		Total Lecture hours		6	0 ho	ours				

Text Book(s)
1 Martin T. Hagan, Howard B. Demuth and Mark Beale, Neural Network Design, Vikas
Publishing House, New Delhi,2002.
Reference Books
1 James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and
Programming Techniques, Pearson Education, 2003.
2 Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997.
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1 https://nptel.ac.in/courses/117/105/117105084/
2 https://nptel.ac.in/courses/106/106/106106184/
Course Designed By: Dr. V. Jeyanthi

Mapping with Programme Outcomes											
COs POs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	
CO1	S	L	M	M	Μ	L	Μ	S	S	Μ	
CO2	S	Μ	Μ	L		L	L	M	Μ	Μ	
CO3	L	M	Μ	S	L	L	L	M	Μ	Μ	
CO4	Μ	M	L	L	M	L	L	L	Μ	S	
CO5	M	Μ	Μ	L	L	L	L	S	Μ	Μ	

กลุ่มสู่ใ

*S-Strong; M-Medium; L-Low

315,551

Page **48** of **65** 

Course code	ELECTIVE 4:	L	Т	P	С					
Core/Elective/Supportive	Elective	4	0	0	4					
Pre-requisite	Pre-requisiteTo know the basic concepts of Statics and Dynamics at Undergraduate level.Syllabus Version									
<b>Course Objectives:</b>		•								
The main objectives of t	his course are to:									
<ol> <li>Understand the con</li> <li>Gain knowledge ab</li> <li>Develop flexibility techniques to unfan</li> </ol>	cepts of electromagnetism, electrostatic energy and mag out boundary conditions of electric and magnetic fields. and creativity of the students in applying mathematical niliar problems arising in everyday life.	ideas	tatic and	energ	<u></u> <u>y</u> .					
<b>Expected Course Outco</b>	omes:									
On the successful com	pletion of the course, student will be able to:									
1 Understand the b motion in magnet	asic concepts of Electromagnetism, Fundamental Laws in the field.	and flu	uid	K	2					
2 Solve and analyzed dynamic equation	e the Naiver-Stokes equations and velocity Magneto fluins with examples.	id		K	3					
3 Understand the M Reynolds number	IHD approximation and gain ability to analyze Magnetic	с		K	4					
4 Gain knowledge incompressible M	about the Magneto hydrostatics and Alfven waves in [HD.			K	5					
5 Understand and d	evelop the Hartmann Flow in the presence of magnetic	field.		K	6					
K1 - Remember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 – (	Creat	e						
		9								
Unit:1	Title of the Unit (Capitalize each Word)		12	hou	rs					
Electromagnetism – F Law – Lorentz force or – Povnting stresses.	undamental Laws – Electrostatic Energy – Electrody a moving charge – Magnetostatic Energy – Faraday's	namics Law c	s An of Inc	npere luctio	s's Sn					
	Star OV									
Unit:2	Title of the Unit (Capitalize each Word)		12	2 hou	rs					
Electromagnetic Equat magnetic fields. Kinen stokes equations – bour	ions with respect to moving axes – boundary condition natics of fluid motion – equation of continuity – Stress adary condition – Velocity Magneto fluid dynamic equa	ns of ( tenso tions.	elect or – 1	ric ai Navie	ıd r-					
Unit:3	Title of the Unit (Capitalize each Word)		10	hou	rs					
MHD approximation Magnetic Reynolds nu	- equation of Magnetic diffusion in a moving cond nber.	ucting	me	dium	-					
TT	$\mathbf{T}^{\mathbf{t}}_{\mathbf{t}} = \mathbf{t}^{\mathbf{t}}_{\mathbf{t}} + \mathbf{t}^{\mathbf$		10	1.						
Alfven's theorem Law in incompressible MHI	of isorotation - Magneto hydrostatics – Force-free fiel	d - A	12 lfven	nou wav	es					
Unit:5	Title of the Unit (Capitalize each Word)		12	2 hou	rs					
Incompressible viscous Hartmann flow – Magr	s flows in the presence of magnetic field – Hartmann eto fluid dynamic pipe flow.	Flow	— ur	istead	1y					

Unit:6 Contemporary Issues 2 hou	rs
Helmholtz's Theorem for Electric Field – https://youtu.be/LOGy8hBTQEQ	
Total Lecture hours     60 hou	rs
Text Book(s)	
1 Crammer K.R. and Pai S.I, Magneto Fluid Dynamics for Engineers and Applied Physicists, McGraw Hill, 1973.	
2 Ferraro, VCA and Plumpton, Introduction to Magneto Fluid Dynamics, Oxford, 1966.	
Reference Books	
1 P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University press,	
2001.	
2 R. V. Polovin, V. P. Demutskii, Fundamentals of Magnetohydrodynamics, Springer US,	
1990.	
601° C 400	
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1 https://www.youtube.com/watch?v=mE3uY_yKsCo	
2 https://www.youtube.com/watch?v=rFJ1UZSFZno	
3 https://www.youtube.com/watch?v=A9pUXEI128U	
Course Designed By: Prof. M. Indhumathi.	

Mapping with Programme Outcomes													
COs POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO1	S	Μ	M	S	L	M	S	L	Μ	Μ			
CO2	Μ	S	Μ	Μ	Μ	S	Μ	S	S	Μ			
CO3	S	Μ	Μ	Μ	S	L	M	Μ	Μ	Μ			
CO4	M	M	S	S	L	S	S	M	S	Μ			
CO5	S	M	Μ	S	Μ	Μ	M	S	Μ	S			
*S-Strong;	CO5     S     M     M     S     M     M     M     S     M     S       *S-Strong; M-Medium; L-Low     #SS-Strong; M-Medium; L-Low     #SS-Strong; P_UINES     #SS-Strong; P_UIN												

A

Course codeELECTIVE 5: FUZZY LOGIC AND FUZZY SETSLTP												
Core/Elective/S	Supportive	Elective	4	0	0	4						
Dro requisit	<u> </u>	Basic knowledge in crisp sets, relations and	Sylla	bus	20.2	1						
rre-requisite	5	functions at Undergraduate level.	Versi	on	20-2	<b>1</b>						
Course Objec	tives:											
The main obje	ctives of thi	s course are to:										
1. identify f	uzzy sets an	d perform set operations on fuzzy sets.										
2. apply fuzzy logic in various real-life situations such as decision making and inventory control.												
Expected Course Outcomes:												
On the succes	On the successful completion of the course, student will be able to:											
1 Gain knowledge about the basic types of fuzzy sets and the difference between												
crisp sets and fuzzy sets and the concept of operations on fuzzy sets												
2 Analyze	e and apply	the knowledge of fuzzy relations.			K	3,						
3 Develop	3 Develop the basic concepts of fuzzy measures.											
4 Explore the concept of uncertainity.												
5 Understand the types of uncertainity measures and principles K												
K1 - Remember; K2 - Undestand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create												
			_									
Unit:1		Crisp Sets and Fuzzy Sets		12	hou	rs						
Introduction-	Crisp sets: A	An over view-The Notion of Fuzzy Sets-basic concep	ts of F	uzzy	Sets	, —						
General aggr	gic: comple	nent-Fuzzy Union-Fuzzy intersection – Combinatio	n or c	opera	lons	_						
General aggi												
Unit:2	6	Fuzzy Relations	Ì /	12	hou	rs						
Crisp and Fuz	zzy relation	s – Binary relations – Binary relations on a single set -	- Equi	valen	ice a	nd						
similarity rel	ations – Co	ompatibility on Tolerance Relations-Orderings – M	orphis	m –	Fuz	zy						
relations Equ	ations. 💛	Coimbatore										
11.4.2		S. Martin S.		11	1.							
Conorol disc	ussion Bo	Fuzzy Measures	Doc		nou	<u>rs</u>						
Necessity me	asures	ener and plausionity measures – Hobability measures	-108	51011	ny a	liu						
	ubures.	SAIL IN RESP										
Unit:4		Fuzzy Measures, Uncertainty		11	hou	rs						
Relationship	among class	ses of fuzzy measures - Types of Uncertainty - Measures	ures of	f Fuz	zines	<u>3</u> S-						
Classical Mea	asures of Ur	ncertainty.										
<b></b>												
Unit:5		Uncertainty and Information		12	hou	rs						
and Information	Dissonance	-inteasures of Conflusion – Measures of Non-Specific	infor	Unce natio	rtair n	ιy						
		and complexity – i incipies of Oncertainty and	mon	114110	·11.							
Unit:6		Contemporary Issues		2	hou	rs						
Expert lecture	es, online se	eminars - webinars										
		<b>Total Lecture hours</b>		60	hou	rs						

Text Book(s)
1 George J. Klir and Tina A. Folger, Fuzzy Sets, Uncertainty and Information, Fourth printing,
Prentice Hall of India Private Limited, 1995.
Unit-I: 1.1 – 1.5, 2.2 - 2.6
Unit-II: 3.1 – 3.8
Unit-III: 4.1 – 4.4
Unit-IV: 4.5, 5.1 – 5.3
Unit-V: 5.4 – 5.9.
Reference Books
1 George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic - Theory and Applications,
Prentice-Hall of India Private Limited
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1 https://giocher.wordpress.com/chapter-2-par-2-2-fuzzy-relations-and-the-extension-
principle/
2 https://nptel.ac.in/courses/108/104/108104157/
Course Designed By: Prof. D. Saravanan

Mappi	Mapping with Programme Outcomes												
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10			
<b>CO1</b>	L	M	S	L	M	L	S	Μ	S	S			
CO2	Μ	S	Μ	S	S	S	S	S	S	S			
CO3	S	S	L	M	S	S	L	M	L	S			
<b>CO4</b>	S	S	L	Μ	S	S	L	M	L	S			
CO5	Μ	S	M	S	S	S	S	S	Μ	S			

Dogstante TO ELEV

มู่สุญญา

Course code	ourse codeELECTIVE 6: CONTROL THEORYLTP										
Core/Elective/S	Supportive	Elective	4	0	0	4					
Pre-requisite	<b>e</b>	Basic knowledge in differential equations and optimization at Undergraduate level.	Sylla Versi	bus on	20-2	21					
<b>Course Object</b>	tives:										
The main object	ctives of thi	s course are to:									
1. Understar	nd the conce	pts of Observability, Controllability and Stability.									
2. Gain know	wledge abou	it linear time varying systems.									
3. Develop t	he ability of	f solving linear feedback control.									
Expected Course Outcomes:											
Expected Course Outcomes:											
On the successful completion of the course, student will be able to:											
I Explain	observabili	ty and estimate the observability of constant coefficie	nt		K	2					
system, linear, nonlinear system, and discuss reconstruction kernel.											
2 Apply controllability criteria to constant coefficient system, linear, nonlinear											
3 Analyze	and explain the stabilit	y of linear system linear time varying system perturb	ed lin	ear	K	1					
system :	and nonline	ar system		Cai	N						
4 Evaluate stabilization via linear feedback control Bass method											
5 Analyze controllable subspace and stabilization with restricted feedback											
K1 Pemem	por: <b>K2</b> II	derstand: K3 Apply: K4 Applyze: K5 Evaluate:	K6 (	Troot							
KI - Kemenn	Jei, <b>K2</b> - OI	Iderstand, KS - Appry, K4 - Anaryze, K5 - Evaluate,	KU - (	.10au							
Unit.1		Obsorvability		13	hou	re					
Linear System	$n_{\rm c} = Obset$	vability Grammian - Constant coefficient systems	- Rec	14 const	ructi	<u>15</u> 00					
kernel – Nonl	inear Syster	ms		Jonst	iucu	Л					
	inear Byster		)								
Unit:2	Sec.	Controllability		12	hou	rs					
Linear system	ns – Contro	llability Grammian – Adjoint systems – Constant coe	fficier	nt sys	stems						
steering funct	ion – Nonli	near systems.		2							
		~St @									
Unit:3		Stability 2		10	hou	rs					
Stability – U	niform Stab	ility – Asymptotic Stability of Linear Systems.									
Unit:4		Perturbed Linear Systems		12	hou	rs					
Linear time v	arying syste	ems – Perturbed linear systems – Nonlinear systems.									
T I : 4 . <b>7</b>		C4-1-11:1-11:4		10	1.						
Unit:5	uio linoon fe	Stabilizability			hou	rs					
stabilization with restrictor	via intear IC	zeuback control – Bass methou – Controllable subspa	ce - s	otaDI	uzati	л					
	I TEEUDACK.										
Unit:6 Contamporary Issues 2 hours											
Expert lecture	es. online se	minars - webinars				-0					
r	,										
		Total Lecture hours		60	hou	rs					

Te	ext Book(s)								
1	K. Balachandran and J. P. Dauer, Elements of Control Theory, Narosa, New Delhi, 1999.								
Re	Reference Books								
1	R. Conti, Linear Differential Equations and Control, Academic Press, London, 1976.								
2	R. F. Curtain and A. J. Pritchard, Functional Analysis and Modern Applied Mathematics,								
	Academic Press, New York, 1977.								
3	J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publisher, Dordrecht,								
	1991.								
4	D. L. Russell, Mathematics of Finite Dimensional Control Systems, Marcel Dekker, New								
	York, 1979.								
5	E. B. Lee and L. Markus, Foundations of optimal Control Theory, John Wiley, New York,								
	1967.								
Re	elated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
1	https://www.youtube.com/watch?v=39Ggoj2fQ2c								
2	https://nptel.ac.in/courses/115/108/115108104/								

- 3 https://nptel.ac.in/courses/107/106/107106081/
- Course Designed By: Prof. M. Indhumathi

Manning	with P	rogram	me Ou	teomos
		וומוצטו	1115 170	

Wapping with rogramme Outcomes												
COs	<u>POs</u>	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	PO8	<b>PO9</b>	PO10	
<b>CO1</b>		S	M	Μ	L	S	S	Μ	L	Μ	Μ	
CO2		Μ	Μ	S	Μ	M	Μ	Μ	Μ	Μ	S	
CO3		S	S	M	M	Μ	Μ	S	S	S	S	
<b>CO4</b>		Μ	M	S	S	S	S	L	Μ	S	Μ	
CO5	124	S	S	M	S	M	M	L	Μ	Μ	Μ	

69 55 51 Dissiumony 2

มก่ฐาย E

die

Course code		ELECTIVE 7: CRYPTOGRAPHY	L	Т	Р	С						
Core/Elective/S	Supportive	Elective	4	0	0	4						
Pre-requisite	9	Basic knowledge in Modular arithmetic and finite field.	Sylla Versi	bus on	20-2	21						
Course Objec	tives:											
The main obje	ctives of thi	s course are to:										
<ol> <li>Provide t</li> <li>Able to k</li> <li>Know the</li> </ol>	<ol> <li>Provide the deeper understanding in cryptography and its application to network security.</li> <li>Able to know the applications of number theory in cryptography.</li> <li>Know the methods of public key cryptography and its usefulness.</li> </ol>											
Expected Cou	rse Outcor	nes:										
On the succes	sful comple	etion of the course, student will be able to:										
1 Underst	and the bas	ic concepts and objective of cryptography and recall the	ne		K	1						
concept	of modular	arithmetic.			&							
					K	2						
2 Underst algorith	and mathen ms.	natical foundations required for various cryptographic			K	2						
3 Apply t	he <mark>concept</mark> a	and properties of modular arithmetic in various algorit	hms to	C	K	3						
find the	solution.	23 19			&							
					K	.5						
4 Describe and Analyze existing authentication protocols for two party communications.												
5 Evalua	te security r	nechanisms in the theory of networks and apply the			K	3						
appropr	iate algorith	nms.			& K	: 5						
K1 - Rememl	oer; K2 - U	nderstand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (	Create	e							
	40	The second second		1								
Unit:1	200	Title of the Unit (Capitalize each Word)	<u> </u>	12	hour	'S						
Introduction Introduction -	– Encryptic – Modular A	on and Secrecy – The objective of Cryptography - I	Numbe	er Th	eory	_						
		Alter a Hill SP	1									
Unit:2		Title of the Unit (Capitalize each Word)	<u> </u>	12	hou	rs						
Integer factor logarithm pro	blem.	blem – Pollard's rho factoring – Elliptic curve fac	toring	– L	01SCTE	ete						
Unit:3	r	Title of the Unit (Capitalize each Word)		12	hour	S						
Finite fields	– Basic pro	perties – Arithmetic of polynomials –Factoring polyn	omial	s ove	r fin	ite						
fields – Squai	re free facto	rization.										
Unit:4	r	Title of the Unit (Capitalize each Word)		10	hou	rs						
Symmetric ke	ey encryptio	on – Stream ciphers – Block Ciphers – DES.										
Unit:5	]	Fitle of the Unit (Capitalize each Word)		12	hou	rs						
Public key cry Discrete logari	ptography - thm – Ellip	<ul> <li>Concepts of public key cryptography – Modular ar tic curve cryptography.</li> </ul>	ithmet	ic –	RSA	. —						

## M.Sc. Mathematics 2021-22 onwards Affiliated Colleges -AnnexureNo.5(a)

SCAADATED:23.06.2021

Ur	nit:6	Contemporary Issues	2 hours							
Ex	pert lecture	es, online seminars - webinars								
	-									
			(0 h							
		1 otai Lecture nours	60 nours							
Te	xt Book(s)									
1	1 Hans Delfs, Helmut Knebl, Introduction to Cryptography, Springer Verlag, 2002.									
2	2 Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, Handbook of Applied									
	Cryptography, CRC Press, 2000.									
3	William S	tallings, Cryptography and Network Security, Prentice Hall of In	ndia, 2000.							
			,							
Re	eference Bo	ooks								
1	Cryptogra	phy and Information Security, Pachghare V.K., PHI Learning Pvt. Ltd	l., New Delhi, 2009							
2	Cryptogra	uphy and Network Security, Behrouz A. Forouzan and Debdeep M	ukhopathyey, 2013,							
	second ed	ition, Mc Graw Hill Education Pvt. Ltd., New Delhi.								
Re	lated Onli	ne Con <mark>tents [MOO</mark> C, SWAYAM, NPTEL, Websites etc.]								
1	https://n	otel.ac.in/courses/106/105/106105162/								
2	https://n	otel.ac.in/courses/106/105/106105031/								
	¥									
Сс	ourse Desig	ned By: Dr. V. Jeyanthi								

COs	Program	me Out	comes	DO4	PO5	DOC	DO7	DOP	DOD	<b>DO10</b>
POs	PUI	PO2	PUS	P04	PUS	PUO	ru/	PUð	P09	POIU
CO1	M	L	M	M	L	Μ	Μ	L	Μ	S
CO2	L	S	L	L	M	M	M	Μ	Μ	Μ
CO3	M	L	Μ	L	L	Μ	L	L	L	Μ
CO4	Μ	Μ	Μ	L	Μ	L	L	S	Μ	S
CO5	L	Μ	L	Μ	L	Μ	L	Μ	Μ	S
*S-Strong; M	-Medium;	L-Low					60			
		500				13.				
		ୁଙ୍କ ଜୁ	IE			150				
்தப்பாரை உய										
EDUCATE TO ELEVATE										

All and a second second

Course code	ELECTIVE 8: MATLAB	L	Т	Р	С						
Core/Elective/Supportive	Elective	4	0	0	4						
Pre-requisite	Be able to understand how to built-in math functions enable to quickly explore multiple approaches to arrive at a solution.	Sylla Versi	bus on	20-2	1						
Course Objectives:											
The main objectives of the	is course are to:										
1. Understand the Matlab Desktop, Command window and the Graph Window.											
2. Be able to carry out numerical computations and analyses.											
3. Understand the mathematical concepts upon which numerical methods rely.											
Expected Course Outcomes:											
On the successful compl	etion of the course, student will be able to:										
1 Understand the basic concepts of starting windows and solve the MATLAB K2											
applications.											
2 Create arrays and s	olve them in MATLAB.			Ke	5						
3 Solve problems us MATLAB.	Solve problems using M files and apply the same for advanced data objects in KATLAB.										
4 Understand the im	4 Understand the importance of MATLAB in differential equations and assess it for										
plotting graphs using layouts.											
5 Diagnose various applications of MATLAB in curve fitting, statistics and											
integration.				4							
$\mathbf{K}\mathbf{I}$ - Remember; $\mathbf{K}2$ - $\mathbf{U}$	ndestand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	<b>6</b> - C	reate								
2											
Unit:1	Starting with Matlab and Creating Arrays			<u>2 hou</u>	irs						
Starting with Matlab: S	tarting MAILAB, MAILAB Windows - Working	in t	he C	omm	and						
Functions - Defining Sca	lar Variables - Useful Commands for Managing Varia	tary I bles	viati Scri	Dull nt Fil	l-III						
Examples of MATLAR A	nonlications	0105 -	Sen	pum	<u>cs</u> -						
Creating Arrays: Creating	a One-Dimensional Array (Vector) - Creating a Two-	Dime	nsio	nal Aı	rrav						
(Matrix) - Notes about V	Variables n MATLAB - The Transpose Operator - A	Array	Add	ressin	1g -						
Using a Colon: In Addres	sing Arrays - Adding Elements to Existing Variables -	Dele	ting	Eleme	ents						
- Built-In Functions for H	andling Arrays - Strings and Strings as Variables.										
		1									
Unit:2 Mathem	natical Operations with Arrays, Using Script Files		12	2 hou	irs						
	and Managing Data										
Mathematical Operations	with Arrays: Addition and Subtraction - Array Mu	ltiplic	ation	1 - A1	rray						
Division - Element-By-El Built in Eurotions for	A neluzing Arrays Concretion of Rendom Number	in Ma	In FU	metio	ns -						
MATI AR Applications	Analyzing Allays - Generation of Random Numbe	- 15	Еха	inples	01						
Using Script Files and M	anaging Data: The MATLAB Workspace and the Wo	orksni	ace V	Vindo	w -						
Input to A Script File -	Output Commands - The Save And Load Command	ls - Ii	npor	ting A	And						
Exporting Data - Example	es of MATLAB Applications.		1	0							

U	nit:3	<b>Two-Dimensional Plots and Three-Dimensional Plots</b>	12 hours							
Two-Dimensional Plots: The plot Command - The fplot Command - Plotting Multiple Graphs in										
the Same Plot - Formatting a Plot - Plots with Logarithmic Axes - Plots with Error Bars - Plots										
Wit	With Special Graphics - Histograms - Polar Plots - Putting Multiple Plots on the Same Page -									
Mu	Itiple Figur	e Windows - Examples of MATLAB Applications.								
Thr	ee-Dimensi	onal Plots: Line Plots - Mesh and Surface Plots - Plots with S	pecial Graphics - The							
vie	view Command - Examples of Matiad Applications.									
U	nit:4	Programming In Matlab, User-Defined Functions and	12 hours							
		Function Files								
Pro	Programming In Matlab: Relational and Logical Operators - Conditional Statements - The Switch-									
Cas	e Statemen	t - Loops - Nested Loops and Nested Conditional Statemer	nts - The Break and							
Cor	ntinue Com	mands - Examples of MATLAB Applications.								
Use	er-Defined I	Functions and Function Files: Creating A Function File - Struct	ure of a Function File							
- L	ocal And	Global Variables - Saving A Function File - Using A Use	r-Defined Function -							
Exa	imples of S	Imple User-Defined Functions - Comparison Between Script Fi	les and Function Files							
- A	nonymous	And Infine Functions - Function Functions - Sublunctions	- Nested Functions -							
LAC	unples Of N	TATLAB Applications.								
Th	nit·5	Polynomials, Curve Fifting, Interpolation and	10 hours							
	ntie	Applications in Numerical Analysis	10 nours							
Po	lynomials,	Curve Fitting, and Interpolation: Polynomials - Curve Fitting	- Interpolation - The							
Ba	sic Fitting I	nterface - Examples of MATLAB Applications.								
Ap	oplications	in Numerical Analysis: Solving an Equation with One Variable -	Finding a Minimum							
or	a Maximun	n of a Function - Numerical Integration - Ordinary Differential Equ	uations - Examples of							
M	ATLAB Ap	plications.								
TT										
	III:0	Contemporary issues	2 nours							
	pert lecture	s, onnie semmars - webmars	S S							
		Total Lecture hours	60 hours							
Τe	ext Book(s)	କୁମ୍ବର ଜନ								
1	Amos Gila	at, MATLAB An Introduction with Applications, John Wiley &	Sons, Inc., 2011.							
		S 0								
Re	eference Bo	oks கூதப்பாரை உயாதா								
1	Rudra Pra	tap, Getting Started with MATLAB- A Quick Introduction for Sc	eientists and Engineers,							
	Oxford U	niversity Press.								
2	2 William John Palm, Introduction to MATLAB 7 for Engineers, McGraw-Hill Professional, 2005.									
3	3 Dolores M. Etter and David C. Kuncicky, Introduction to MATLAB 7, Printice Hall, 2004.									
Re	elated Onli	ne Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
	https://npt	el.ac.in/courses/103/106/103106118/	1 1 11 4 10							
2	http://web	4.cs.uci.ac.uk/teaching/3085/archive/2010/matlab_tutorial/matl	ab_booklet.pdf							
3	https://w	ww.youtube.com/watcn?v=zJm8vHg41bQ								
	Jurea Dagia	ned By: Prof M Indhumethi								
	Juise Desig	neu Dy. FIOI. M. munullaun								

Mapping with Programme Outcomes										
COs POs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10
CO1	S	Μ	S	L	S	Μ	S	S	S	S
CO2	Μ	S	Μ	Μ	Μ	S	Μ	Μ	S	Μ
CO3	Μ	Μ	S	S	S	S	Μ	S	Μ	S
CO4	S	Μ	Μ	L	Μ	Μ	S	Μ	S	Μ
CO5	S	Μ	Μ	S	Μ	S	Μ	S	Μ	S



Course code     ELECTIVE 9: LaTex     L     T     P							С				
Core/Elective/Supportive			Elective	4	0	0	4				
Pre	e-requisite	)	Basic concepts on mathematical functions.	bus on	20-21						
Cou	rse Objec	tives:		•							
The	The main objectives of this course are to:										
1.	Understa	nd richness	of Latex rather than using M.S word for documentation	on.							
2.	2. Proficient in documentation using mathematical symbols, graphs and tables.										
<b>F</b>											
Exp	the succes	rse Outcon	nes:								
1	Undorst	and basic of	encents of Text formatting and LaTex file			V					
1	Domon	and Dasie C	mond names and arguments. Special characters				.2				
2			de te ere ete de aureant levent and displayed eutrat.								
3	Apply u	ne comman	as to create document layout and displayed output			K	. <i>.</i> , 6				
4	Create 7	Table, Print	ing Text. Foot notes and marginal notes			K	<u>.</u> 6				
5	Apply I	aT <mark>ex com</mark> r	nands to mathematical formulae			K	3				
K1	- Rememb	per; <mark>K2</mark> - U	nderstand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 – (	Creat	e					
Un	it:1	1	Introduction		11	hou	rs				
Tex 2ε,	t formatti Basics of a	ng, TEX ar a LaTex file	id its offspring, What's different in LATEX $2\varepsilon$ , Dist	tinguis	hing	LaT	ex				
Un	it:2	mag and a	Commands and Environments		11 hore	hou	rs				
Spa cha	aces and racters. Th	carriage re	eturns, Quotation marks, Hyphens and dashes, P eturns, Quotation marks, Hyphens and dashes, P	rinting		nma	nd				
	,	<u> </u>	A Colimbatore								
Un	it:3	Docume	ent Layout and Organization, Displayed Text		14	hou	rs				
Doc	cument cla	uss, Page s	tyle, Parts of the document, Table of contents -	Auton	natic	entr	ies,				
Print	ting the tal	ble of conte	ents, Fine-Tuning text – Line breaking, Page breaking	g. Disp	laye	d Tez	ĸt −				
Char	nging font	– Emphasis	s, Choice of font size, Font attributes, Centering and in	ndentir	ig, Li	ists.					
Un	it:4		Displayed Text (Continued)		10	hou	rs				
Tabl	es, Printin	g literal tex	t, Footnotes and marginal notes.								
		1									
Un	it:5		Mathematical Formulae		12	hou	rs				
Math	nematical e	environmen	ts, Main elements of math mode,		Eine	4	:				
math	mathematical symbols – Greek letters, function names, Additional elements, Fine-tuning mathematical Horizontal spacing Selecting fort size in formulas										
manomatics Tionzontal spacing, belocing font size in formatas.											
Un	it:6		Contemporary Issues		2	hou	rs				
Exp	pert lecture	es, online se	eminars – webinars								
		1									
	Total Lecture hours60 ho										

Te	ext Book(s)
1	Helmut Kopka and Patrick W. Daly, A Guide to LATEX, Third Edition, Addison – Wesley,
	London,1999.
	Unit I : Chapter 1 : Sections : 1.1-1.3, 1.4.1, 1.5.
	Unit II : Chapter 2 : Sections : 2.1-2.4, 2.5.1-2.5.4, 2.5.9, 2.7.
	Unit III : Chapter 3 : Sections : 3.1-3.3, 3.4.1, 3.4.2, 3.5.2, 3.5.5,
	Chapter 4 : 4.1.1-4.1.3, 4.2, 4.3
	Unit IV : Chapter 4 : Sections : 4.8-4.10.
	Unit V : Chapter 5: Sections : 5.1, 5.2, 5.31, 5.3.8, 5.4, 5.4.1 – 5.4.8, 5.5.1, 5.5.2.

## **Reference Books**

1 Velusamy Kavitha and Mani Mallikarjunan, Fundamentals of Latex for Mathematicians, Physicists and Engineers, LAP LAMBERT Academy Publishing, Germany, 2013.

#### Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

	- / / /
1	https://www.youtube.com/watch?v=Q4FozDTRE_4
2	https://www.youtube.com/watch?v=DvDO1mea1w0
1	

Course Designed By: Dr. R Buvaneswari

Mapping with Programme Outcomes											
COs	-POs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>
CO1		S	M	L	M	M	Μ	L	L	Μ	Μ
CO2		Μ	L	• L	M	M	Μ	L	L	Μ	Μ
CO3		L	M	L	Μ	Μ	S	L	S	S	Μ
CO4		M	L	L	M	M	M	L	L	Μ	Μ
CO5			Μ	Μ	Μ	Μ	S	L	S 9	S	Μ

*S-Strong; M-Medium; L-Low AR UN Colmbetore Colmbetore Colmbetore Colmbetore Colmbetore Colmbetore Colmbetore Colmbetore Colmbetore

Course code10 - ELEMENTS OF STOCHASTIC PROCESSESLTP											
Core/Elective/S	Supportive	Elective	4	0	0	4					
Pre-requisite	;	Know the basic concepts of Statistics and Operation Research at Undergraduate level	Sylla Versi	bus on	20-2	1					
<b>Course Objec</b>	tives:	- · · · · · · · · · · · · · · · · · · ·	1								
The main objectives of this course are to:											
<ol> <li>Acquire knowledge about the concept of Markov Chain and Queueing System.</li> <li>Understand the methods of Birth and Death queues with Finite and Infinite Capacity.</li> <li>Develop the ability of Standard Brownian Motion.</li> </ol>											
Evported Cou	rea Outoor	nosi									
On the succes	sful comple	tion of the course student will be able to:									
1 A capira	adaquata k	nowledge about Continuous Time Markey Chain and			V	1					
1 Acquire Oueueii	rg Systems	now ledge about Continuous Time Markov Chain and				1					
2       Gain understanding on the Renewal Process, Cumulative Process and Semi-       H         Markey Drawer       H											
3 Apply d	lifferent me	thods and solve Birth and Death queues		10	K	3					
4 Examin	e th <mark>e comp</mark>	utations of $M/G/1$ and $G/M/1$ Queues and Network of	Oueue	26	K	$\frac{3}{4}$					
5 Conclus	de th <mark>e idea</mark> (	of Brownian Motion and First Passage Times	Queu		K	5					
K1 Rememb	1000000000000000000000000000000000000	ndestand: K3 Apply: K4 Analyze: K5 Evaluate: K	76 C	raata		5					
KI - Kemem	Jei, <b>K</b> 2 - Ul	idestand, KS - Appry, K4 - Anaryze, K5 - Evaluate, F	10 - C	reate							
Unit · 1		Continuous-Time Markov Models		12	hou	rs					
Continuous 7	Time Marke	y Chain Examples Transient Analysis Occupancy	Time	es L	imitir	19 19					
Behavior.	G)	, Chain, Zhampies, Hansien Hinarjois, Cooupaioj		, <b>–</b>		-8					
	200	AR UN Colo	/								
Unit:2		Generalized Markov Models		12	2 hou	rs					
Renewal Proc	cess, Cumul	ative Process, Semi-Markov Process, Examples and L	ong te	erm							
Analysis.		Balin means 2 Mingr									
	I	EDUCATE TO ELEVATE									
Unit:3		Queueing Models	••,	12	hou	rs					
Queueing Sy	stems, Sing	gle-Station Queues, Birth and Death queues with F	inite	and	Infini	te					
Capacity.											
∐nit•4		Queueing Models (Contd)		1(	hou	rs					
M/G/1 and G	<u>.</u> /M/1 Оцеце	es and Network of Queues		10	nou	15					
0, 1 mid 0	~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
Unit:5 Brownian Motion 12 hou											
Standard Bro	wnian Moti	on, Brownian Motion and First Passage Times.									
Unit:6		Contemporary Issues		2	2 hou	rs					
Black Schole	s – https://w	/ww.youtube.com/watch?v=Xy_txjKPNyg									
		Total Lecture hours		60	) hou	rs					

Text Book(s)	ļ
1 V. G. Kulkarni, Introduction to Modelling and Analysis of Stochastic Systems, Seco	nd
Edition, Springer, 2011.	
Reference Books	
1 J. Medhi, Stochastic Processes, New Age, 2009.	
2 S. M. Ross, Stochastic Processes, Wiley Series in Probability and Statistics, 1996.	
Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1 https://nptel.ac.in/courses/111/102/111102014/#	
2 https://nptel.ac.in/courses/111/102/111102014/#	
3 https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2145&context=gradreports	
Course Designed By: Prof. M. Indhumathi	

Mapping with Programme Outcomes										
COs POs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10
CO1	M	S	M	S	Μ	S	S	L	S	S
CO2	S	Μ	L	M	L	Μ	L	M	S	Μ
CO3	S	S	Μ	M	M	M	S	L	Μ	Μ
CO4	Μ	M	S	S	S	S 🤇	M	M	S	S
CO5	M	M	M	S	Μ	Μ	S	M	S	S

ाइंझी- **द**वांवी

*S-Strong; M-Medium; L-Low

255

Page **63** of **65** 



# BHARATHIAR UNIVERSITY :: COIMBATORE 641046 DEPARTMENT OF MATHEMATICS

## MISSION

**1.** To create opportunities which will ensure academic excellence in critical thinking, humanistic and scientific inquiry.

2. To organize, connect, create and communicate mathematical ideas effectively, through Dedication, Discipline and Determination.

